Kalman Filtering on $\mathrm{SO}(3)$

Presenter
전준기
스마트미디어연구그룹

Electronics and Telecommunications Research Institute, ETRI
Jan. 31, 2017

Section 1

Kalman Filter

Figure 1: Rudolf Emil Kálmán (May 19, 1930 - July 2, 2016)

Goal

- Tracking problem
- Find the state of a dynamical system, given the history of observations of the system
- Filtering: find the present state
- Smoothing: find past states
- Prediction: find future states
- Control problem
- Try to make a clynamical system into a desired state by applying certain actions, given the history of observations of the system
- States, observations, and actions are in some multi-dimensional continua

Goal

- Tracking problem
- Find the state of a dynamical system, given the history of observations of the system
- Filtering: find the present state
- Smoothing: find past states
- Prediction: find future states
- Control problem
- Try to make a dynamical system into a desired state by applying certain actions, given the history of observations of the system
- States, observations, and actions are in some multi-dimensional continua

Goal

- Tracking problem
- Find the state of a dynamical system, given the history of observations of the system
- Filtering: find the present state
- Smoothing: find past states
- Prediction: find future states
- Control problem
- Try to make a dynamical system into a desired state by applying certain actions, given the history of observations of the system
- States, observations, and actions are in some multi-dimensional continua

Goal

- Tracking problem
- Find the state of a dynamical system, given the history of observations of the system
- Filtering: find the present state
- Smoothing: find past states
- Prediction: find future states
- Control problem
- Try to make a dynamical system into a desired state by applying certain actions, given the history of observations of the system
- States, observations, and actions are in some multi-dimensional continua

Goal

- Tracking problem
- Find the state of a dynamical system, given the history of observations of the system
- Filtering: find the present state
- Smoothing: find past states
- Prediction: find future states
- Control problem
- Try to make a dynamical system into a desired state by applying certain actions, given the history of observations of the system
- States, observations, and actions are in some multi-dimensional continua

Example of System Model

Figure 2: Discrete-Time Control System
X_{k} : system's state at the k th time instance B_{k} : controller's action at the k th time instance
Y_{k} : observation of the system at the k th time instance

Kalman Filter

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function'
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bavesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs Non-Rayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs Non-Rayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Approaches

- Deterministic approaches
- "Solve" the equations
- Minimize corresponding "cost function"
- Probabilistic approaches
- Parametric vs. Non-parametric
- Parametric: assumes certain "form" of probability measures
- Non-parametric: try to find the probability measure itself
- Bayesian vs. Non-Bayesian
- Bayesian: parameter itself is a random variable
- Non-Bayesian: parametr is a fixed unknown constant
- Kalman's approach: parametric Bayesian

Kalman Filter (1)

- Goal: estimate the state of a system given by a time-series $\left(X_{k}\right)_{k=0}^{\infty}$, from observations $\left(Y_{k}\right)_{k=0}^{\infty}$
- Assumptions:
- The system evolves linearly: $X_{k}=F X_{k-1}+W_{k}$
- F : a known, fixed linear transformation
- W_{k} : process noise, driving the system randomly
- The observation is derived linearly from the state: $Y_{k}=H X_{k}+U_{k}$
- H: a known, fixed linear transformation
- U_{k} : measurement noise, making the observation imprecise
- Further assumptions:
- X_{0}, W_{k} 's, U_{k} 's are all independent and all zero-mean Gaussian
- W_{k} 's are identically distributed $w /$ covariance Q
- U_{k} 's are identically distributed w/ covariance R

Kalman Filter (1)

- Goal: estimate the state of a system given by a time-series $\left(X_{k}\right)_{k=0}^{\infty}$, from observations $\left(Y_{k}\right)_{k=0}^{\infty}$
- Assumptions:
- The system evolves linearly: $X_{k}=F X_{k-1}+W_{k}$
- F : a known, fixed linear transformation
- W_{k} : process noise, driving the system randomly
- The observation is derived linearly from the state: $Y_{k}=H X_{k}+U_{k}$
- H : a known, fixed linear transformation
- U_{k} : measurement noise, making the observation imprecise
- Further assumptions:
- X_{0}, W_{k} 's, U_{k} 's are all independent and all zero-mean Gaussian
- W_{k} 's are identically distributed w/ covariance Q
- U_{k} 's are identically distributed w/ covariance R

Kalman Filter (1)

- Goal: estimate the state of a system given by a time-series $\left(X_{k}\right)_{k=0}^{\infty}$, from observations $\left(Y_{k}\right)_{k=0}^{\infty}$
- Assumptions:
- The system evolves linearly: $X_{k}=F X_{k-1}+W_{k}$
- F : a known, fixed linear transformation
- W_{k} : process noise, driving the system randomly
- The observation is derived linearly from the state: $Y_{k}=H X_{k}+U_{k}$
- H: a known, fixed linear transformation
- $U_{k}:$ measurement noise, making the observation imprecise
- Further assumptions:
- X_{0}, W_{k} 's, U_{k} 's are all independent and all zero-mean Gaussian
- W_{k} 's are identically distributed w/ covariance Q
- U_{k} 's are identically distributed w/ covariance R

Kalman Filter (1)

- Goal: estimate the state of a system given by a time-series $\left(X_{k}\right)_{k=0}^{\infty}$, from observations $\left(Y_{k}\right)_{k=0}^{\infty}$
- Assumptions:
- The system evolves linearly: $X_{k}=F X_{k-1}+W_{k}$
- F : a known, fixed linear transformation
- W_{k} : process noise, driving the system randomly
- The observation is derived linearly from the state: $Y_{k}=H X_{k}+U_{k}$
- H : a known, fixed linear transformation
- U_{k} : measurement noise, making the observation imprecise
- Further assumptions:
- X_{0}, W_{k} 's, U_{k} 's are all independent and all zero-mean Gaussian
- W_{k} 's are identically distributed w/ covariance Q
- U_{k} 's are identically distributed w/ covariance R

Kalman Filter (1)

- Goal: estimate the state of a system given by a time-series $\left(X_{k}\right)_{k=0}^{\infty}$, from observations $\left(Y_{k}\right)_{k=0}^{\infty}$
- Assumptions:
- The system evolves linearly: $X_{k}=F X_{k-1}+W_{k}$
- F : a known, fixed linear transformation
- W_{k} : process noise, driving the system randomly
- The observation is derived linearly from the state: $Y_{k}=H X_{k}+U_{k}$
- H : a known, fixed linear transformation
- U_{k} : measurement noise, making the observation imprecise
- Further assumptions:
- X_{0}, W_{k} 's, U_{k} 's are all independent and all zero-mean Gaussian
- W_{k} 's are identically distributed $\mathrm{w} /$ covariance Q
- U_{k} 's are identically distributed $\mathrm{w} /$ covariance R

Example - Speed Camera

- Want to know: the speed of the car
- Observed: the position of the car

Example - Speed Camera

- Want to know: the speed of the car
- Observed: the position of the car
- $X_{k}=\left[\begin{array}{l}P_{k} \\ V_{k}\end{array}\right]$
- P_{k} : position at $t=k \Delta t$
- V_{k} : average velocity between $t=k \Delta t$ and $t=(k+1) \Delta t$

Example - Speed Camera

- Want to know: the speed of the car
- Observed: the position of the car
- $X_{k}=\left[\begin{array}{l}P_{k} \\ V_{k}\end{array}\right]$
- P_{k} : position at $t=k \Delta t$
- V_{k} : average velocity between $t=k \Delta t$ and $t=(k+1) \Delta t$
- $\left[\begin{array}{l}P_{k} \\ V_{k}\end{array}\right]=\left[\begin{array}{cc}1 & \Delta t \\ 0 & 1\end{array}\right]\left[\begin{array}{c}P_{k-1} \\ V_{k-1}\end{array}\right]+\left[\begin{array}{c}0 \\ A_{k} \Delta t\end{array}\right]$
- A_{k} : random acceleration of the car

Example - Speed Camera

- Want to know: the speed of the car
- Observed: the position of the car
- $X_{k}=\left[\begin{array}{l}P_{k} \\ V_{k}\end{array}\right]$
- P_{k} : position at $t=k \Delta t$
- V_{k} : average velocity between $t=k \Delta t$ and $t=(k+1) \Delta t$
- $\left[\begin{array}{l}P_{k} \\ V_{k}\end{array}\right]=\left[\begin{array}{cc}1 & \Delta t \\ 0 & 1\end{array}\right]\left[\begin{array}{c}P_{k-1} \\ V_{k-1}\end{array}\right]+\left[\begin{array}{c}0 \\ A_{k} \Delta t\end{array}\right]$
- A_{k} : random acceleration of the car
- $Y_{k}=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}P_{k} \\ V_{k}\end{array}\right]+U_{k}$
- U_{k} : sensor noise

Kalman Filter (2)

- What is the "best" estimate of X_{k} given Y_{1}, \cdots, Y_{k} ?
- Since we are doing Bayesian estimate, average cost is the concern

Theorem 1
Given $L^{2}-$ r.v. X and a r.v. Y, a conditional expectation of X given Y is an MMSE (Minimum Mean-Square Error) estimate of X given Y; that is, for any measurable function $f: \mathcal{Y} \rightarrow \mathcal{X}$,

- Suffices to find $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$

Kalman Filter (2)

- What is the "best" estimate of X_{k} given Y_{1}, \cdots, Y_{k} ?
- Since we are doing Bayesian estimate, average cost is the concern

Theorem 1
Given L^{2}-r.v. X and a r.v. Y, a conditional expectation of X given Y is an MMSE (Minimum Mean-Square Error) estimate of X given Y; that is, for any measurable function $f: \mathcal{Y} \rightarrow \mathcal{X}$,

- Suffices to find $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$

Kalman Filter (2)

- What is the "best" estimate of X_{k} given Y_{1}, \cdots, Y_{k} ?
- Since we are doing Bayesian estimate, average cost is the concern Theorem 1
Given L^{2}-r.v. X and a r.v. Y, a conditional expectation of X given Y is an MMSE (Minimum Mean-Square Error) estimate of X given Y; that is, for any measurable function $f: \mathcal{Y} \rightarrow \mathcal{X}$,

$$
\mathrm{E}\left[\|X-\mathrm{E}[X \mid Y]\|^{2}\right] \leq \mathrm{E}\left[\|X-f(Y)\|^{2}\right]
$$

Kalman Filter (2)

- What is the "best" estimate of X_{k} given Y_{1}, \cdots, Y_{k} ?
- Since we are doing Bayesian estimate, average cost is the concern Theorem 1
Given L^{2}-r.v. X and a r.v. Y, a conditional expectation of X given Y is an MMSE (Minimum Mean-Square Error) estimate of X given Y; that is, for any measurable function $f: \mathcal{Y} \rightarrow \mathcal{X}$,

$$
\mathrm{E}\left[\|X-\mathrm{E}[X \mid Y]\|^{2}\right] \leq \mathrm{E}\left[\|X-f(Y)\|^{2}\right]
$$

- Suffices to find $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$

Kalman Filter (3)

- If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right]\right)$, then

$$
\left(X_{1} \mid X_{2}=x_{2}\right) \sim \mathrm{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

- What's the matter?
- Intractable to directly calculate $E\left[X_{k} \mid Y_{1}, \ldots, Y_{k}\right]$
- Infinite (indefinitely growing) memory requirement
- Joint distribution of $\left(X_{k}, Y_{1}, \cdots, Y_{k}\right)$ is too complicated
- Have to "summarize" the results before taking Y_{k} into account
- It turns out, $\hat{X}_{k-1 \mid k-1}:=\mathrm{E}\left[X_{k-1} \mid Y_{1}, \cdots, Y_{k-1}\right]$ and

Kalman Filter (3)

- If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right]\right)$, then

$$
\left(X_{1} \mid X_{2}=x_{2}\right) \sim \mathrm{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

- What's the matter?
- Infinite (indefinitely growing) memory requirement
- Joint distribution of $\left(X_{k}, Y_{1}, \cdots, Y_{k}\right)$ is too complicated
- Have to "summarize" the results before taking Y_{k} into account
- It turns out, $\hat{X}_{k-1 \mid k-1}:=\mathrm{E}\left[X_{k-1} \mid Y_{1}, \cdots, Y_{k-1}\right]$ and

Kalman Filter (3)

- If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right]\right)$, then

$$
\left(X_{1} \mid X_{2}=x_{2}\right) \sim \mathrm{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

- What's the matter?
- Intractable to directly calculate $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Infinite (indefinitely growing) memory requirement
- Joint distribution of $\left(X_{k}, Y_{1}, \cdots, Y_{k}\right)$ is too complicated
- Have to "summarize" the results before taking V_{k} into account

Kalman Filter (3)

- If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right]\right)$, then

$$
\left(X_{1} \mid X_{2}=x_{2}\right) \sim \mathrm{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

- What's the matter?
- Intractable to directly calculate $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Infinite (indefinitely growing) memory requirement
- Joint distribution of $\left(X_{k}, Y_{1}, \cdots, Y_{k}\right)$ is too complicated
- Have to "summarize" the results before taking Y_{k} into account

Kalman Filter (3)

- If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right]\right)$, then

$$
\left(X_{1} \mid X_{2}=x_{2}\right) \sim \mathrm{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

- What's the matter?
- Intractable to directly calculate $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Infinite (indefinitely growing) memory requirement
- Joint distribution of $\left(X_{k}, Y_{1}, \cdots, Y_{k}\right)$ is too complicated
- Have to "summarize" the results before taking Y_{k} into account

Kalman Filter (3)

- If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right]\right)$, then

$$
\left(X_{1} \mid X_{2}=x_{2}\right) \sim \mathrm{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

- What's the matter?
- Intractable to directly calculate $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Infinite (indefinitely growing) memory requirement
- Joint distribution of $\left(X_{k}, Y_{1}, \cdots, Y_{k}\right)$ is too complicated
- Have to "summarize" the results before taking Y_{k} into account

Kalman Filter (3)

- If $\left(X_{1}, X_{2}\right) \sim \mathrm{N}\left(\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]\left[\begin{array}{ll}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right]\right)$, then

$$
\left(X_{1} \mid X_{2}=x_{2}\right) \sim \mathrm{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(x_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

- What's the matter?
- Intractable to directly calculate $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Infinite (indefinitely growing) memory requirement
- Joint distribution of $\left(X_{k}, Y_{1}, \cdots, Y_{k}\right)$ is too complicated
- Have to "summarize" the results before taking Y_{k} into account
- It turns out, $\hat{X}_{k-1 \mid k-1}:=\mathrm{E}\left[X_{k-1} \mid Y_{1}, \cdots, Y_{k-1}\right]$ and $P_{k-1 \mid k-1}:=\mathrm{E}\left[\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)^{T}\right]$ are sufficient summaries

Kalman Filter (4)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
(1) Prediction phase: compute $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$ from $\hat{X}_{k-1 \mid k-1}$, $P_{k-1 \mid k-1}$ using the formulas

(2) Update phase: compute $\hat{X}_{k \mid k}, P_{k \mid k}$ from $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$, and Y_{k} using the formulas
- $K_{k}=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+K_{k}\left(Y_{k}-H \hat{X}_{k \mid k-1}\right)$
- $P_{k \mid k}=\left(\mathrm{I}-K_{k} H\right) P_{k \mid k-1}$

Kalman Filter (4)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
(1) Prediction phase: compute $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$ from $\hat{X}_{k-1 \mid k-1}$, $P_{k-1 \mid k-1}$ using the formulas
- $\hat{X}_{k \mid k-1}=F \hat{X}_{k-1 \mid k-1}$
- $P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q$
(2) Update phase
using the formulas

Kalman Filter (4)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
(1) Prediction phase: compute $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$ from $\hat{X}_{k-1 \mid k-1}$, $P_{k-1 \mid k-1}$ using the formulas
- $\hat{X}_{k \mid k-1}=F \hat{X}_{k-1 \mid k-1}$
- $P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q$
(2) Update phase: compute $\hat{X}_{k \mid k}, P_{k \mid k}$ from $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$, and Y_{k} using the formulas
- $K_{k}=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+K_{k}\left(Y_{k}-H \hat{X}_{k \mid k-1}\right)$
- $P_{k \mid k}=\left(\mathrm{I}-K_{k} H\right) P_{k \mid k-1}$

Good Things and Bad Things

- Good things
- Computationally cheap; several matrix multiplications and an inversion
- Small memory requirement; only necessary to remember $X_{k \mid k}$ and $P_{k \mid k}$
- Optimal w.r.t. MSE
- Bad things
- Too limited applications
- Without further assumptions: lose optimality
- Linear system? Extremely rare...

Good Things and Bad Things

- Good things
- Computationally cheap; several matrix multiplications and an inversion
- Small memory requirement; only necessary to remember $\hat{X}_{k \mid k}$ and
- Optimal w.r.t. MSE
- Bad things
- Too limited applications
- Without further assumptions: lose optimality
- Linear system? Extremely rare...

Good Things and Bad Things

- Good things
- Computationally cheap; several matrix multiplications and an inversion
- Small memory requirement; only necessary to remember $\hat{X}_{k \mid k}$ and $P_{k \mid k}$
- Optimal w.r.t. MSE
- Bad things
- Too limited applications
- Without further assumptions: lose optimality
- Linear system? Extremely rare..

Good Things and Bad Things

- Good things
- Computationally cheap; several matrix multiplications and an inversion
- Small memory requirement; only necessary to remember $\hat{X}_{k \mid k}$ and $P_{k \mid k}$
- Optimal w.r.t. MSE
- Bad things
- Too limited applications
- Without further assumptions: lose optimality
- Linear system? Extremely rare..

Good Things and Bad Things

- Good things
- Computationally cheap; several matrix multiplications and an inversion
- Small memory requirement; only necessary to remember $\hat{X}_{k \mid k}$ and $P_{k \mid k}$
- Optimal w.r.t. MSE
- Bad things
- Too limited applications
- Without further assumptions: lose optimality
- Linear system? Extremely rare..

Good Things and Bad Things

- Good things
- Computationally cheap; several matrix multiplications and an inversion
- Small memory requirement; only necessary to remember $\hat{X}_{k \mid k}$ and $P_{k \mid k}$
- Optimal w.r.t. MSE
- Bad things
- Too limited applications
- Without further assumptions: lose optimality
- Linear system? Extremely rare...

How to Go Beyond? (1)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- Filtering process:
(1) Prediction phase:
- $\hat{X}_{k \mid k-1}=F \hat{X}_{k-1 \mid k-1}$
- $P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q$
(2) Update phase:
- $K_{k}=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+K_{k}\left(Y_{k}-H \hat{X}_{k \mid k-1}\right)$
- $P_{k \mid k}=\left(\mathrm{I}-K_{k} H\right) P_{k \mid k-1}$
- Observation: no difference when F, H can vary over time, if we know them exactly
- Replace F to $D f_{\hat{X}}$

How to Go Beyond? (1)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- Filtering process:
(1) Prediction phase:
- $\hat{X}_{k \mid k-1}=F \hat{X}_{k-1 \mid k-1}$
- $P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q$
(2) Update phase:
- $K_{k}=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+K_{k}\left(Y_{k}-H \hat{X}_{k \mid k-1}\right)$
- $P_{k \mid k}=\left(\mathrm{I}-K_{k} H\right) P_{k \mid k-1}$
- Observation: no difference when F, H can vary over time, if we know them exactly

How to Go Beyond? (1)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- Filtering process:
(1) Prediction phase:
- $\hat{X}_{k \mid k-1}=F \hat{X}_{k-1 \mid k-1}$
- $P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q$
(2) Update phase:
- $K_{k}=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+K_{k}\left(Y_{k}-H \hat{X}_{k \mid k-1}\right)$
- $P_{k \mid k}=\left(\mathrm{I}-K_{k} H\right) P_{k \mid k-1}$
- Observation: no difference when F, H can vary over time, if we know them exactly
- Replace F to $D f_{\hat{X}_{k-1 \mid k-1}}, H$ to $D h_{\hat{X}_{k \mid k-1}}$
\Rightarrow Extended Kalman Filter (EKF)

How to Go Beyond? (2)

- Problems of EKF
- VERY sensitive when \tilde{X} approaches to singularities
- Calculation of the Jacobian matrices could be extremely complicated
- Cannot force constraints
- There are other alternatives:
- Unscented Kalman Filter (UKF)
- Particle Filter
- Moving Horizon Filter
- Etc...

How to Go Beyond? (2)

- Problems of EKF
- VERY sensitive when \hat{X} approaches to singularities
- Calculation of the Jacobian matrices could be extremely complicated
- Cannot force constraints
- There are other alternatives:
- Unscented Kalman Filter (UKF)
- Particle Filter
- Moving Horizon Filter
- Etc..

How to Go Beyond? (2)

- Problems of EKF
- VERY sensitive when \hat{X} approaches to singularities
- Calculation of the Jacobian matrices could be extremely complicated
- Cannot force constraints
- There are other alternatives:
- Unscented Kalman Filter (UKF)
- Particle Filter
- Moving Horizon Filter
- Etc..

How to Go Beyond? (2)

- Problems of EKF
- VERY sensitive when \hat{X} approaches to singularities
- Calculation of the Jacobian matrices could be extremely complicated
- Cannot force constraints
- There are other alternatives:
- Unscented Kalman Filter (UKF)
- Particle Filter
- Moving Horizon Filter
- Etc.

How to Go Beyond? (2)

- Problems of EKF
- VERY sensitive when \hat{X} approaches to singularities
- Calculation of the Jacobian matrices could be extremely complicated
- Cannot force constraints
- There are other alternatives:
- Unscented Kalman Filter (UKF)
- Particle Filter
- Moving Horizon Filter
- Etc...

Section 2

Attitude Tracking

Figure 3: Olinde Rodrigues (October 6, 1795 - December 17, 1851)

Problem Definition (1)

- What "attitude" means?
- The coordinates of three frame vectors with respect to the global coordinate system

Figure 4: Frame vectors

Problem Definition (2)

- What "attitude" means?
- (Frame vectors) $=$ (Rotation matrix)
- $r:=\left[\begin{array}{lll}e_{r} & e_{p} & e_{y}\end{array}\right]^{T}$
- $($ Rotation matrix $)=($ Orthogonal matrix w/det. $=1)$
- The set of orthogonal matrices $w /$ det. $=1$ is called the special orthogonal group and denoted as $\mathrm{SO}(3)$
- In summary, we are to find an element in $\mathrm{SO}(3)$

Problem Definition (3)

- What we have?
- Inertial Measurement Unit (IMU): combination of the following three sensors:
- Gyroscope: measures angular velocity
- Accelerometer: measures acceleration
- Magnetometer: measures magnetic field
- Accelerometer measures the gravity
- Magnetometr measures the heading; think of compass

Figure 5: The output of gyroscope sensors

Problem Definition (3)

- What we have?
- Inertial Measurement Unit (IMU): combination of the following three sensors:
- Gyroscope: measures angular velocity
- Accelerometer: measures acceleration
- Magnetometer: measures magnetic field
- Accelerometer measures the gravity
- Magnetometr measures the heading; think of compass

Figure 5: The output of gyroscope sensors

Problem Definition (4)

- Gyroscope measures change of frame vectors with respect to the local frame vectors

$$
\begin{aligned}
& r e_{1}^{\prime} \approx\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\omega_{3} \Delta t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]-\omega_{2} \Delta t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& r e_{2}^{\prime} \approx\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+\omega_{1} \Delta t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]-\omega_{3} \Delta t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& r e_{3}^{\prime} \approx\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\omega_{2} \Delta t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\omega_{1} \Delta t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Problem Definition (5)

- Gyroscope measures change of frame vectors with respect to the local frame vectors

$$
\begin{aligned}
& r\left[\begin{array}{lll}
e_{1}^{\prime} & e_{2}^{\prime} & e_{3}^{\prime}
\end{array}\right] \\
& \approx I+\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] \Delta t \\
& \approx \exp \left([\omega]_{\times \Delta t}\right.
\end{aligned}
$$

- Hence, $r\left(r^{\prime}\right)^{T} \approx \exp \left([\omega]_{\times} \Delta t\right), r^{\prime} \approx \exp \left(-[\omega]_{\times} \Delta t\right) r$

Problem Definition (6)

- Evolution equations:

Attitude $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
Angular velocity $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
where A_{k} is a random process noise

- Measurement equations:

where U_{k}, V_{k}, W_{k} are random measurement noises, a the constant gravity vector, and \mathbf{m} the constant Earth magnetic field vector
- Valid only when
- There is no rapid movement
- There is no magnetic disturbance

Problem Definition (6)

- Evolution equations:

Attitude $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
Angular velocity $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
where A_{k} is a random process noise

- Measurement equations:

Gyroscope $G_{k}=\Omega_{k}+U_{k}$
Accelerometer $A_{k}=R_{k} \mathbf{a}+V_{k}$
Magnetometer $M_{k}=R_{k} \mathbf{m}+W_{k}$
where U_{k}, V_{k}, W_{k} are random measurement noises, a the constant gravity vector, and \mathbf{m} the constant Earth magnetic field vector

- Valid only when
- There is no rapid movement
- There is no magnetic disturbance

Problem Definition (6)

- Evolution equations:

Attitude $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
Angular velocity $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
where A_{k} is a random process noise

- Measurement equations:

Gyroscope $G_{k}=\Omega_{k}+U_{k}$
Accelerometer $A_{k}=R_{k} \mathbf{a}+V_{k}$
Magnetometer $M_{k}=R_{k} \mathbf{m}+W_{k}$
where U_{k}, V_{k}, W_{k} are random measurement noises, a the constant gravity vector, and \mathbf{m} the constant Earth magnetic field vector

- Valid only when
- There is no rapid movement
- There is no magnetic disturbance

Problem Definition (7)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Goal: find R_{k} given Y_{1}^{k}, where $Y_{k}:=\left(G_{k}, A_{k}, M_{k}\right)$
- We may assume $A_{k}, U_{k}, V_{k}, W_{k}$ are all independent isotropic i.i.d. Gaussian process

Problem Definition (7)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Goal: find R_{k} given Y_{1}^{k}, where $Y_{k}:=\left(G_{k}, A_{k}, M_{k}\right)$
- We may assume $A_{k}, U_{k}, V_{k}, W_{k}$ are all independent isotropic i.i.d. Gaussian process

Problem Definition (7)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Goal: find R_{k} given Y_{1}^{k}, where $Y_{k}:=\left(G_{k}, A_{k}, M_{k}\right)$
- We may assume $A_{k}, U_{k}, V_{k}, W_{k}$ are all independent isotropic i.i.d. Gaussian process

State Variables Are Not in \mathbb{R}^{n}

- There is no "conditional expectation"
- But we can find MMSE estimator if we know the conditional distribution
- There is no "Gaussian distribution"
- Why Gaussian distribution is so nice?
- Very stable under various kinds of transformations
- Affine transforms
- Conditioning
- Etc.
- Parametrized
- Physically meaningful
- Central limit theorem
- Brownian motion, heat kernel, diffusion kernel, or related
- Maximum entropy under energy constraint
- Etc.

State Variables Are Not in \mathbb{R}^{n}

- There is no "conditional expectation"
- But we can find MMSE estimator if we know the conditional distribution
- There is no "Gaussian distribution"
- Why Gaussian distribution is so nice?
- Very stable under various kinds of transformations
- Affine transforms
- Conditioning
- Etc.
- Parametrized
- Physically meaningful
- Central limit theorem
- Brownian motion, heat kernel, diffusion kernel, or related
- Maximum entropy under energy constraint
- Etc.

State Variables Are Not in \mathbb{R}^{n}

- There is no "conditional expectation"
- But we can find MMSE estimator if we know the conditional distribution
- There is no "Gaussian distribution"
- Why Gaussian distribution is so nice?
- Very stable under various kinds of transformations
- Affine transforms
- Conditioning
- Etc.
- Parametrized
- Physically meaningful
- Central limit theorem
- Brownian motion, heat kernel, diffusion kernel, or related
- Maximum entropy under energy constraint
- Etc.

State Variables Are Not in \mathbb{R}^{n}

- There is no "conditional expectation"
- But we can find MMSE estimator if we know the conditional distribution
- There is no "Gaussian distribution"
- Why Gaussian distribution is so nice?

```
- Very stable under various kinds of transformations
    - Affine transforms
    - Conditioning
    - Etc.
- Parametrized
- Physically meaningful
    - Central limit theorem
    - Brownian motion, heat kernel, diffusion kernel, or related
    - Maximum entropy under energy constraint
    - Etc.
```


State Variables Are Not in \mathbb{R}^{n}

- There is no "conditional expectation"
- But we can find MMSE estimator if we know the conditional distribution
- There is no "Gaussian distribution"
- Why Gaussian distribution is so nice?
- Very stable under various kinds of transformations
- Affine transforms
- Conditioning
- Etc.
- Parametrized
- Physically meaningful
- Central limit theorem
- Brownian motion, heat kernel, diffusion kernel, or related
- Maximum entropy under energy constraint
- Etc.

State Variables Are Not in \mathbb{R}^{n}

- There is no "conditional expectation"
- But we can find MMSE estimator if we know the conditional distribution
- There is no "Gaussian distribution"
- Why Gaussian distribution is so nice?
- Very stable under various kinds of transformations
- Affine transforms
- Conditioning
- Etc.
- Parametrized
- Physically meaningful
- Central limit theorem
- Brownian motion, heat kernel, diffusion kernel, or related
- Maximum entropy under energy constraint
- Etc.

State Variables Are Not in \mathbb{R}^{n}

- There is no "conditional expectation"
- But we can find MMSE estimator if we know the conditional distribution
- There is no "Gaussian distribution"
- Why Gaussian distribution is so nice?
- Very stable under various kinds of transformations
- Affine transforms
- Conditioning
- Etc.
- Parametrized
- Physically meaningful
- Central limit theorem
- Brownian motion, heat kernel, diffusion kernel, or related
- Maximum entropy under energy constraint
- Etc.

Drift-Diffusion Equation (1)

- What is the most natural generalization of Gaussian measures on Lie groups?

Theorem 2 (Drift-Diffusion Equation)
The solution $f:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ to the differential equation

where $A:=\left[a_{i j}\right]$ is positive-semidefinite is given as

$$
f(t, x)=\int f_{0}(x-y) d \mu_{t}(y)=\left(f_{0} * \mu_{t}\right)(x)
$$

where μ_{t} is the measure given by its Fourier-Stieltjes transform
$\hat{\mu}_{t}(\xi)=\exp \left(-2 \pi i t\langle\xi, b\rangle-2 \pi^{2} t\langle\xi, A \xi\rangle\right)$

Drift-Diffusion Equation (1)

- What is the most natural generalization of Gaussian measures on Lie groups?

Theorem 2 (Drift-Diffusion Equation)
The solution $f:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ to the differential equation

$$
\left\{\begin{array}{l}
\frac{\partial f(t, x)}{\partial t}=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2} f(x, t)}{\partial x_{i} x_{j}}-\sum_{i=1}^{n} b_{i} \frac{\partial f(x, t)}{\partial x_{i}} \\
f(0, x)=f_{0}(x), \quad f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{C}
\end{array}\right.
$$

where $A:=\left[a_{i j}\right]$ is positive-semidefinite is given as

$$
f(t, x)=\int f_{0}(x-y) d \mu_{t}(y)=\left(f_{0} * \mu_{t}\right)(x)
$$

where μ_{t} is the measure given by its Fourier-Stieltjes transform $\hat{\mu}_{t}(\xi)=\exp \left(-2 \pi i t\langle\xi, b\rangle-2 \pi^{2} t\langle\xi, A \xi\rangle\right)$.

Drift-Diffusion Equation (2)

- Gaussian measures on \mathbb{R}^{n} can be characterized as
- Kernels of drift-diffusion equations, or
- Measures whose Fourier transforms are of the form

$$
\hat{\mu}(\xi)=\exp \left(-2 \pi i\langle\xi, b\rangle-2 \pi^{2}\langle\xi, A \xi\rangle\right)
$$

- Equivalence of the above two characterization is not a coincidence
- Turns out, the same is true for general Lie groups!

Drift-Diffusion Equation (2)

- Gaussian measures on \mathbb{R}^{n} can be characterized as
- Kernels of drift-diffusion equations, or
- Measures whose Fourier transforms are of the form

$$
\hat{\mu}(\xi)=\exp \left(-2 \pi i\langle\xi, b\rangle-2 \pi^{2}\langle\xi, A \xi\rangle\right)
$$

- Equivalence of the above two characterization is not a coincidence
- Turns out, the same is true for general Lie groups!

Drift-Diffusion Equation (2)

- Gaussian measures on \mathbb{R}^{n} can be characterized as
- Kernels of drift-diffusion equations, or
- Measures whose Fourier transforms are of the form

$$
\hat{\mu}(\xi)=\exp \left(-2 \pi i\langle\xi, b\rangle-2 \pi^{2}\langle\xi, A \xi\rangle\right)
$$

- Equivalence of the above two characterization is not a coincidence
- Turns out, the same is true for general Lie groups!

Some Backgrounds (1)

Definition 3 (Unitary representation)

A unitary representation of a locally compact Hausdorff group G is a continuous group homomorphism $\xi: G \rightarrow \mathrm{U}(E)$ into the unitary group of a Hilbert space E endowed with the strong operator topology.

Definition 4 (Fourier-Stieltjes transform)
For $\mu \in M(G)$ and a unitary representation ξ of G, the Fourier-Stieltjes transform of μ at ξ is defined as

$$
\hat{\mu}(\xi):=\int \xi\left(x^{-1}\right) d \mu(x)
$$

Some Backgrounds (2)

Definition 5 (Convolution)

For $\mu, \nu \in M(G)$, the convolution of μ and ν is defined as

$$
\mu * \nu: A \mapsto \iint \mathbb{1}_{A}(x y) d \mu(x) d \nu(y) .
$$

In particular, according to the embedding $L^{1}(G) \rightarrow M(G)$ with respect to the right Haar measure,

$$
f * \mu: x \mapsto \int f\left(x y^{-1}\right) d \mu(y)
$$

Proposition 6

For $\mu, \nu \in M(G)$ and a unitary representation ξ of G,

$$
\widehat{\mu * \nu}(\xi)=\hat{\nu}(\xi) \hat{\mu}(\xi) .
$$

Some Backgrounds (3)

Theorem 7 (Gelfand-Raikov)
A measure $\mu \in M(G)$ is uniquely determined by values of its
Fourier-Stieltjes transform at irreducible unitary representations; that is, if $\hat{\mu}(\xi)=0$ for all irreducible unitary representation ξ of G, then $\mu=0$.

- However, in general, computing μ from $\hat{\mu}(\xi)$'s is very hard, even when we know the complete list of irreducible unitary representations

Some Backgrounds (3)

Theorem 7 (Gelfand-Raikov)
A measure $\mu \in M(G)$ is uniquely determined by values of its
Fourier-Stieltjes transform at irreducible unitary representations; that is, if $\hat{\mu}(\xi)=0$ for all irreducible unitary representation ξ of G, then $\mu=0$.

- However, in general, computing μ from $\hat{\mu}(\xi)$'s is very hard, even when we know the complete list of irreducible unitary representations

Drift-Diffusion Equation (3)

Theorem 8
Let G be a Lie group and D be a left-invariant differential operator on G given as $D=-m+\frac{1}{2} \Sigma$, where $m \in \mathfrak{g}$ and $\Sigma \in U(\mathfrak{g})$ is a degree 2 symmetric positive-semidefinite element. Then the unique solution to the differential equation

$$
\left\{\begin{array}{l}
\frac{\partial f(t, x)}{\partial t}=D f(t, x) \\
f(0, x)=f_{0}(x), \quad f_{0}: G \rightarrow \mathbb{C}
\end{array}\right.
$$

is given as

$$
f(t, x)=\int f_{0}\left(x y^{-1}\right) d \mu_{t}(y)=\left(f_{0} * \mu_{t}\right)(x)
$$

where μ_{t} is the unique measure such that $\hat{\mu}_{t}: \xi \mapsto \exp \left(t \xi_{*} D\right)$.

Drift-Diffusion Equation (4)

- The theorem says:
- For any $\xi, \exp \left(t \xi_{*} D\right)$ is a well-defined bounded operator on the Hilber space on which ξ is defined
- There uniquely exists a probability measure $\mu_{t} \in M(G)$ having $\xi \mapsto \exp \left(t \xi_{*} D\right)$ as its Fourier-Stieltjes transform - $\left(\mu_{t}\right)_{t \geq 0}$ is the kernel of the left-invariant drift-diffusion equation

Definition 9 (Drift-diffusion measure)
The drift-diffusion measure associated to D is the measure μ_{1}, which is the unique measure satisfying $\hat{\mu}_{1}: \xi \mapsto \exp \left(\xi_{*} D\right)$.

Drift-Diffusion Equation (4)

- The theorem says:
- For any $\xi, \exp \left(t \xi_{*} D\right)$ is a well-defined bounded operator on the Hilber space on which ξ is defined
> - There uniquely exists a probability measure $\mu_{t} \in M(G)$ having $\xi \mapsto \exp \left(t \xi_{*} D\right)$ as its Fourier-Stieltjes transform
- $\left(\mu_{t}\right)_{t \geq 0}$ is the kernel of the left-invariant drift-diffusion equation

Definition 9 (Drift-diffusion measure)
The drift-diffusion measure associated to D is the measure μ_{1}, which is the unique measure satisfying $\hat{\mu}_{1}: \xi \mapsto \exp \left(\xi_{*} D\right)$.

Drift-Diffusion Equation (4)

- The theorem says:
- For any $\xi, \exp \left(t \xi_{*} D\right)$ is a well-defined bounded operator on the Hilber space on which ξ is defined
- There uniquely exists a probability measure $\mu_{t} \in M(G)$ having $\xi \mapsto \exp \left(t \xi_{*} D\right)$ as its Fourier-Stieltjes transform

Definition 9 (Drift-diffusion measure)
The drift-diffusion measure associated to D is the measure μ_{1}, which is the unique measure satisfying $\hat{\mu}_{1}: \xi \mapsto \exp \left(\xi_{*} D\right)$

Drift-Diffusion Equation (4)

- The theorem says:
- For any $\xi, \exp \left(t \xi_{*} D\right)$ is a well-defined bounded operator on the Hilber space on which ξ is defined
- There uniquely exists a probability measure $\mu_{t} \in M(G)$ having $\xi \mapsto \exp \left(t \xi_{*} D\right)$ as its Fourier-Stieltjes transform
- $\left(\mu_{t}\right)_{t \geq 0}$ is the kernel of the left-invariant drift-diffusion equation

Definition 9 (Drift-diffusion measure)
The drift-diffusion measure associated to D is the measure μ_{1}, which is
the unique measure satisfying $\hat{\mu}_{1}: \xi \mapsto \exp \left(\xi_{*} D\right)$.

Drift-Diffusion Equation (4)

- The theorem says:
- For any $\xi, \exp \left(t \xi_{*} D\right)$ is a well-defined bounded operator on the Hilber space on which ξ is defined
- There uniquely exists a probability measure $\mu_{t} \in M(G)$ having $\xi \mapsto \exp \left(t \xi_{*} D\right)$ as its Fourier-Stieltjes transform
- $\left(\mu_{t}\right)_{t \geq 0}$ is the kernel of the left-invariant drift-diffusion equation

Definition 9 (Drift-diffusion measure)

The drift-diffusion measure associated to D is the measure μ_{1}, which is the unique measure satisfying $\hat{\mu}_{1}: \xi \mapsto \exp \left(\xi_{*} D\right)$.

Left-Translated Diffusion Distribution on SO(3) (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\operatorname{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(50(3))$ will play the role of covariance matrix
- $x_{0} \in G$ will play the role of mean
- The case when $\Sigma=\sigma^{2} 1$, that is, when it is a Casimir element,
- We call μ central or isotropic
- For $\nu=\mathrm{LD}\left(u_{0}, \Sigma\right), \mu * \nu=\mathrm{LD}\left(x_{0} y_{0}, \Sigma+\sigma^{2} 1\right)$
- In general, convolution of non-isotropic LD's need not an LD

Left-Translated Diffusion Distribution on SO(3) (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\mathrm{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(50(3))$ will play the role of covariance matrix - $x_{0} \in G$ will play the role of mean
- The case when $\Sigma=\sigma^{2} 1$, that is, when it is a Casimir element,
- We call μ central or isotropic
- For $\nu=\mathrm{LD}\left(y_{0}, \Sigma\right), \mu * \nu=\mathrm{LD}\left(x_{0} y_{0}, \Sigma+\sigma^{2} 1\right)$
- In general, convolution of non-isotropic LD's need not an LD

Left-Translated Diffusion Distribution on $\mathrm{SO}(3)$ (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\operatorname{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(\mathfrak{s o}(3))$ will play the role of covariance matrix
- The case when $\Sigma=\sigma^{2} 1$, that is, when it is a Casimir element,
- We call μ central or isotropic
- For $\nu=\operatorname{LD}\left(y_{0}, \Sigma\right), \mu * \nu=\operatorname{LD}\left(x_{0} y_{0}, \Sigma+\sigma^{2} 1\right)$
- In general, convolution of non-isotropic LD's need not an LD

Left-Translated Diffusion Distribution on SO(3) (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\mathrm{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(\mathfrak{s o}(3))$ will play the role of covariance matrix
- $x_{0} \in G$ will play the role of mean
- We call μ central or isotropic
- For $\nu=\operatorname{LD}\left(y_{0}, \Sigma\right), \mu * \nu=\operatorname{LD}\left(\sigma_{0} y_{0}, \Sigma+\sigma^{2} 1\right)$
- In general, convolution of non-isotropic LD's need not an LD

Left-Translated Diffusion Distribution on SO(3) (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\mathrm{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(\mathfrak{s o}(3))$ will play the role of covariance matrix
- $x_{0} \in G$ will play the role of mean
- The case when $\Sigma=\sigma^{2} 1$, that is, when it is a Casimir element,
- We call μ central or isotropic
- In general, convolution of non-isotropic LD's need not an LD

Left-Translated Diffusion Distribution on SO(3) (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\mathrm{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(\mathfrak{s o}(3))$ will play the role of covariance matrix
- $x_{0} \in G$ will play the role of mean
- The case when $\Sigma=\sigma^{2} 1$, that is, when it is a Casimir element,
- We call μ central or isotropic
- In general, convolution of non-isotropic LD's need not an LD

Left-Translated Diffusion Distribution on SO(3) (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\mathrm{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(\mathfrak{s o}(3))$ will play the role of covariance matrix
- $x_{0} \in G$ will play the role of mean
- The case when $\Sigma=\sigma^{2} 1$, that is, when it is a Casimir element,
- We call μ central or isotropic
- For $\nu=\operatorname{LD}\left(y_{0}, \Sigma\right), \mu * \nu=\operatorname{LD}\left(x_{0} y_{0}, \Sigma+\sigma^{2} \mathbf{1}\right)$

Left-Translated Diffusion Distribution on SO(3) (1)

- Let's focus on the case $G=\mathrm{SO}(3)$
- Let us call a measure $\mu \in M(G)$ a left-translated diffusion distribution if $\hat{\mu}(\xi)=\exp \left(\frac{1}{2} \xi_{*} \Sigma\right) \xi\left(x_{0}^{-1}\right)$, and denote $\mu=\mathrm{LD}\left(x_{0}, \Sigma\right)$
- Σ, a symmetric positive-definite degree 2 element in $U(\mathfrak{s o}(3))$ will play the role of covariance matrix
- $x_{0} \in G$ will play the role of mean
- The case when $\Sigma=\sigma^{2} 1$, that is, when it is a Casimir element,
- We call μ central or isotropic
- For $\nu=\operatorname{LD}\left(y_{0}, \Sigma\right), \mu * \nu=\operatorname{LD}\left(x_{0} y_{0}, \Sigma+\sigma^{2} \mathbf{1}\right)$
- In general, convolution of non-isotropic LD's need not an LD

Left-Translated Diffusion Distribution on SO(3) (2)

- A kind of central limit theorem hold [2][1]
- For isotropic distributions, the pdf can be calculuated numerically as

$$
f(t)=\sum_{l=0}^{\infty}(2 l+1) e^{-\frac{l(l+1)}{2} \sigma^{2}}\left(\frac{\sin \left(l+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right)
$$

where t is the distance from the center

- Is x_{0} the MSE estimate when the distribution is LD $\left(x_{0}, \Sigma\right)$?

Left-Translated Diffusion Distribution on SO(3)

- A kind of central limit theorem hold [2][1]
- For isotropic distributions, the pdf can be calculuated numerically

where t is the distance from the center
- Is x_{0} the MSE estimate when the distribution is $\operatorname{LD}\left(x_{0}, \Sigma\right)$?

Left-Translated Diffusion Distribution on SO(3) (2)

- A kind of central limit theorem hold [2][1]
- For isotropic distributions, the pdf can be calculuated numerically as

$$
f(t)=\sum_{l=0}^{\infty}(2 l+1) e^{-\frac{l(l+1)}{2} \sigma^{2}}\left(\frac{\sin \left(l+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right)
$$

where t is the distance from the center

- Is x_{0} the MSE estimate when the distribution is $\operatorname{LD}\left(x_{0}, \Sigma\right)$?

Left-Translated Diffusion Distribution on SO(3) (2)

- A kind of central limit theorem hold [2][1]
- For isotropic distributions, the pdf can be calculuated numerically as

$$
f(t)=\sum_{l=0}^{\infty}(2 l+1) e^{-\frac{l(l+1)}{2} \sigma^{2}}\left(\frac{\sin \left(l+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right)
$$

where t is the distance from the center

- Is x_{0} the MSE estimate when the distribution is $\operatorname{LD}\left(x_{0}, \Sigma\right)$?

Update Using Gyroscope (1)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- Assume
- $R_{0} \perp \Omega_{0}$
- $R_{0} \sim \mathrm{LD}\left(\bar{r}_{0}, \Sigma_{0}\right)$
- $\Omega_{0} \sim \mathrm{~N}\left(\bar{\omega}_{0}, \sigma_{\Omega, 0}^{2} 1\right)$

Update Using Gyroscope (1)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- Assume
- $R_{0} \perp \Omega_{0}$
- $R_{0} \sim \mathrm{LD}\left(\bar{r}_{0}, \Sigma_{0}\right)$
- $\Omega_{0} \sim \mathrm{~N}\left(\bar{\omega}_{0}, \sigma_{\Omega, 0}^{2} \mathbf{1}\right)$
- $\left(\Omega_{1} \mid G_{1}=g_{1}\right) \sim \mathbb{N}\left(\bar{\omega}_{1}, \sigma_{\Omega, 1}^{2} 1\right)$ where

Update Using Gyroscope (1)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- Assume
- $R_{0} \perp \Omega_{0}$
- $R_{0} \sim \mathrm{LD}\left(\bar{r}_{0}, \Sigma_{0}\right)$
- $\Omega_{0} \sim \mathrm{~N}\left(\bar{\omega}_{0}, \sigma_{\Omega, 0}^{2} \mathbf{1}\right)$
- $\left(\Omega_{1} \mid G_{1}=g_{1}\right) \sim \mathrm{N}\left(\bar{\omega}_{1}, \sigma_{\Omega, 1}^{2} \mathbf{1}\right)$ where

$$
\begin{aligned}
\bar{\omega}_{1} & :=\frac{\sigma_{U}^{2} \bar{\omega}_{0}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}}+\frac{\left(\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}\right) g_{1}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}} \\
\sigma_{\Omega, 1}^{2} & :=\frac{\sigma_{U}^{2}\left(\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}\right)}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}}
\end{aligned}
$$

Update Using Gyroscope (2)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- Similarly, $\left(\Omega_{0} \mid G_{1}=g_{1}\right) \sim \mathrm{N}\left(\tilde{\omega}_{0}, \tilde{\sigma}_{\Omega, 0}^{2} \mathbf{1}\right)$ where

$$
\begin{aligned}
\tilde{\omega}_{0} & :=\frac{\left(\sigma_{A}^{2} \Delta t^{2}+\sigma_{U}^{2}\right) \bar{\omega}_{0}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}}+\frac{\sigma_{\Omega, 0}^{2} g_{1}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}} \\
\tilde{\sigma}_{\Omega, 0}^{2} & :=\frac{\left(\sigma_{A}^{2} \Delta t^{2}+\sigma_{U}^{2}\right) \sigma_{\Omega, 0}^{2}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega, 0}^{2}}
\end{aligned}
$$

Update Using Gyroscope (3)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- Since $G_{1}-\Omega_{0}-R_{0}$ is a Markov chain and $R_{0} \perp \Omega_{0}$,

$$
\text { (dist. } \left.R_{1} \mid G_{1}\right)=\left(\text { dist. } \exp \left(-\left[\Omega_{0}\right]_{\times} \Delta t\right) \mid G_{1}\right) *\left(\text { dist. } R_{0}\right)
$$

- Claim 1 if $\bar{\omega}, \sigma^{2}$ are small enough,

$$
\exp _{*} \mathrm{~N}\left(\bar{\omega}, \sigma^{2} \mathbf{1}\right) \approx \operatorname{LD}\left(\exp \left([\bar{\omega}]_{\times}\right), \sigma^{2} \mathbf{1}\right)
$$

- Hence, if Δt is small enough,

Update Using Gyroscope (3)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- Since $G_{1}-\Omega_{0}-R_{0}$ is a Markov chain and $R_{0} \perp \Omega_{0}$,

$$
\text { (dist. } \left.R_{1} \mid G_{1}\right)=\left(\text { dist. } \exp \left(-\left[\Omega_{0}\right]_{\times} \Delta t\right) \mid G_{1}\right) *\left(\text { dist. } R_{0}\right)
$$

- Claim 1 if $\bar{\omega}, \sigma^{2}$ are small enough,

$$
\exp _{*} \mathrm{~N}\left(\bar{\omega}, \sigma^{2} \mathbf{1}\right) \approx \operatorname{LD}\left(\exp \left([\bar{\omega}]_{\times}\right), \sigma^{2} \mathbf{1}\right)
$$

- Hence, if Δt is small enough,

Update Using Gyroscope (3)

- System model:
- $R_{k}=\exp \left(-\left[\Omega_{k-1}\right]_{\times} \Delta t\right) R_{k-1}$
- $\Omega_{k}=\Omega_{k-1}+A_{k} \Delta t$
- $G_{k}=\Omega_{k}+U_{k}$
- Since $G_{1}-\Omega_{0}-R_{0}$ is a Markov chain and $R_{0} \perp \Omega_{0}$,

$$
\text { (dist. } \left.R_{1} \mid G_{1}\right)=\left(\text { dist. } \exp \left(-\left[\Omega_{0}\right]_{\times} \Delta t\right) \mid G_{1}\right) *\left(\text { dist. } R_{0}\right)
$$

- Claim 1 if $\bar{\omega}, \sigma^{2}$ are small enough,

$$
\exp _{*} \mathrm{~N}\left(\bar{\omega}, \sigma^{2} \mathbf{1}\right) \approx \operatorname{LD}\left(\exp \left([\bar{\omega}]_{\times}\right), \sigma^{2} \mathbf{1}\right)
$$

- Hence, if Δt is small enough,

$$
\begin{aligned}
\left(R_{1} \mid G_{1}=g_{1}\right) & \sim \operatorname{LD}\left(\exp \left(-\left[\tilde{\omega}_{0}\right]_{\times} \Delta t\right), \tilde{\sigma}_{\Omega, 0}^{2} \mathbf{1}\right) * \operatorname{LD}\left(\bar{r}_{0}, \Sigma_{0}\right) \\
& =\mathrm{LD}\left(\exp \left(-\left[\tilde{\omega}_{0}\right]_{\times} \Delta t\right) \bar{r}_{0}, \tilde{\sigma}_{\Omega, 0}^{2} \mathbf{1}+\Sigma_{0}\right)
\end{aligned}
$$

Bingham Distribution (1)

Definition 10 (Bingham distribution)

For a symmetric 4×4 real matrix M, the Bingham distribution associated to M is the probability measure on $\mathrm{SU}(2) \subseteq \mathbb{R}^{4}$ whose pdf is of the form

$$
f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)
$$

Bingham Distribution (1)

Definition 10 (Bingham distribution)

For a symmetric 4×4 real matrix M, the Bingham distribution associated to M is the probability measure on $\mathrm{SU}(2) \subseteq \mathbb{R}^{4}$ whose pdf is of the form

$$
f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)
$$

- $f(q)=f(-q)$, thus the pushforward of this measure by the covering map $\pi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ doubles the pdf
- $\mathrm{BH}(M)=\mathrm{BH}(M+\lambda \mathbf{1})$, so we may assume the eigenvalues of M
are $0 \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$

Bingham Distribution (1)

Definition 10 (Bingham distribution)

For a symmetric 4×4 real matrix M, the Bingham distribution associated to M is the probability measure on $\mathrm{SU}(2) \subseteq \mathbb{R}^{4}$ whose pdf is of the form

$$
f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)
$$

- $f(q)=f(-q)$, thus the pushforward of this measure by the covering map $\pi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ doubles the pdf
- Denote this pushforward onto $\mathrm{SO}(3)$ as $\mathrm{BH}(M)$

Bingham Distribution (1)

Definition 10 (Bingham distribution)

For a symmetric 4×4 real matrix M, the Bingham distribution associated to M is the probability measure on $\mathrm{SU}(2) \subseteq \mathbb{R}^{4}$ whose pdf is of the form

$$
f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)
$$

- $f(q)=f(-q)$, thus the pushforward of this measure by the covering map $\pi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ doubles the pdf
- Denote this pushforward onto $\mathrm{SO}(3)$ as $\mathrm{BH}(M)$
- $\mathrm{BH}(M)=\mathrm{BH}(M+\lambda \mathbf{1})$, so we may assume the eigenvalues of M are $0 \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$

Bingham Distribution (2)

- $f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)$

- There exists $q_{0}:=\left(s_{0}, v_{0}\right) \in \mathrm{SU}(2) \subseteq \mathbb{R}^{1+3}$ and $Q \in \mathrm{O}(3)$ such that

Bingham Distribution (2)

- $f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)$
- $M=P^{T}\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 0 & 0 \\ 0 & 0 & \lambda_{2} & 0 \\ 0 & 0 & 0 & \lambda_{3}\end{array}\right] P$, for some $P \in \mathrm{O}(4)$
- There exists $q_{0}:=\left(s_{0}, v_{0}\right) \in \mathrm{SU}(2) \subseteq \mathbb{R}^{1+3}$ and $Q \in \mathrm{O}(3)$ such that

Bingham Distribution (2)

- $f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)$
- $M=P^{T}\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 0 & 0 \\ 0 & 0 & \lambda_{2} & 0 \\ 0 & 0 & 0 & \lambda_{3}\end{array}\right] P$, for some $P \in \mathrm{O}(4)$
- There exists $q_{0}:=\left(s_{0}, v_{0}\right) \in \mathrm{SU}(2) \subseteq \mathbb{R}^{1+3}$ and $Q \in \mathrm{O}(3)$ such that

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & Q
\end{array}\right] Q_{L}\left(q_{0}^{-1}\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & Q
\end{array}\right]\left[\begin{array}{cc}
s_{0} & v_{0}^{T} \\
-v_{0} & s_{0} \mathbf{1}-\left[v_{0}\right]_{\times}
\end{array}\right]
$$

Bingham Distribution (2)

- $f(q)=\frac{1}{K(M)} \exp \left(q^{T} M q\right)$
- $M=P^{T}\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & \lambda_{1} & 0 & 0 \\ 0 & 0 & \lambda_{2} & 0 \\ 0 & 0 & 0 & \lambda_{3}\end{array}\right] P$, for some $P \in \mathrm{O}(4)$
- There exists $q_{0}:=\left(s_{0}, v_{0}\right) \in \mathrm{SU}(2) \subseteq \mathbb{R}^{1+3}$ and $Q \in \mathrm{O}(3)$ such that

$$
P=\left[\begin{array}{ll}
1 & 0 \\
0 & Q
\end{array}\right] Q_{L}\left(q_{0}^{-1}\right)=\left[\begin{array}{cc}
1 & 0 \\
0 & Q
\end{array}\right]\left[\begin{array}{cc}
s_{0} & v_{0}^{T} \\
-v_{0} & s_{0} \mathbf{1}-\left[v_{0}\right]_{\times}
\end{array}\right]
$$

- Hence, $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized
- $\Sigma=Q^{T}\left[\begin{array}{ccc}-\frac{1}{2 \lambda_{1}} & 0 & 0 \\ 0 & -\frac{1}{2 \lambda_{2}} & 0 \\ 0 & 0 & -\frac{1}{2 \lambda_{3}}\end{array}\right] Q$ is positive-definite
- Q : principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- $K(M):=\int_{\mathrm{SU}(2)} \exp \left(q^{T} M q\right) d q$ depends only on eigenvalues
- Claim $2 \mathrm{LD}\left(\pi\left(q_{0}\right), \Sigma\right) \approx \mathrm{BH}(M)$
- Numerically verified for some isotropic cases [1]

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized

Q is positive-definite
- Q : principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- $K(M):=\int_{\mathrm{SU}(2)} \exp \left(q^{T} M q\right) d q$ depends only on eigenvalues
- Claim $2 \mathrm{LD}\left(\pi\left(q_{0}\right), \Sigma\right) \approx \mathrm{BH}(M)$
- Numerically verified for some isotropic cases [1]

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized
- $\Sigma=Q^{T}\left[\begin{array}{ccc}-\frac{1}{2 \lambda_{1}} & 0 & 0 \\ 0 & -\frac{1}{2 \lambda_{2}} & 0 \\ 0 & 0 & -\frac{1}{2 \lambda_{3}}\end{array}\right] Q$ is positive-definite
- Q: principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- $K(M):=\int_{\mathrm{SU}(2)} \exp \left(q^{T} M q\right) d q$ depends only on eigenvalues
- Claim $2 \operatorname{LD}\left(\pi\left(q_{0}\right), \Sigma\right) \approx \operatorname{BH}(M)$
- Numerically verified for some isotropic cases [1]

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized
- $\Sigma=Q^{T}\left[\begin{array}{ccc}-\frac{1}{2 \lambda_{1}} & 0 & 0 \\ 0 & -\frac{1}{2 \lambda_{2}} & 0 \\ 0 & 0 & -\frac{1}{2 \lambda_{3}}\end{array}\right] Q$ is positive-definite
- Q : principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- $K(M):=\int_{\mathrm{SU}(2)} \exp \left(q^{T} M q\right) d q$ depends only on eigenvalues
- Claim $2 \mathrm{LD}\left(\pi\left(q_{0}\right), \Sigma\right) \approx \mathrm{BH}(M)$
- Numerically verified for some isotropic cases [1]

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized
- $\Sigma=Q^{T}\left[\begin{array}{ccc}-\frac{1}{2 \lambda_{1}} & 0 & 0 \\ 0 & -\frac{1}{2 \lambda_{2}} & 0 \\ 0 & 0 & -\frac{1}{2 \lambda_{3}}\end{array}\right] Q$ is positive-definite
- Q : principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- Claim $2 \mathrm{LD}\left(\pi\left(q_{0}\right), \Sigma\right) \approx \mathrm{BH}(M)$
- Numerically verified for some isotropic cases [1]

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized
- $\Sigma=Q^{T}\left[\begin{array}{ccc}-\frac{1}{2 \lambda_{1}} & 0 & 0 \\ 0 & -\frac{1}{2 \lambda_{2}} & 0 \\ 0 & 0 & -\frac{1}{2 \lambda_{3}}\end{array}\right] Q$ is positive-definite
- Q : principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- $K(M):=\int_{\mathrm{SU}(2)} \exp \left(q^{T} M q\right) d q$ depends only on eigenvalues
- Numerically verified for some isotropic cases [1]

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized
- $\Sigma=Q^{T}\left[\begin{array}{ccc}-\frac{1}{2 \lambda_{1}} & 0 & 0 \\ 0 & -\frac{1}{2 \lambda_{2}} & 0 \\ 0 & 0 & -\frac{1}{2 \lambda_{3}}\end{array}\right] Q$ is positive-definite
- Q : principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- $K(M):=\int_{\mathrm{SU}(2)} \exp \left(q^{T} M q\right) d q$ depends only on eigenvalues
- Claim $2 \operatorname{LD}\left(\pi\left(q_{0}\right), \Sigma\right) \approx \operatorname{BH}(M)$

Bingham Distribution (3)

- $f(q)=\frac{1}{K(M)} \exp \left(\left(q_{0}^{-1} q\right)^{T}\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right]\left(q_{0}^{-1} q\right)\right)$
- $\pi\left(q_{0}\right)$: unique center, at which f is maximized
- $\Sigma=Q^{T}\left[\begin{array}{ccc}-\frac{1}{2 \lambda_{1}} & 0 & 0 \\ 0 & -\frac{1}{2 \lambda_{2}} & 0 \\ 0 & 0 & -\frac{1}{2 \lambda_{3}}\end{array}\right] Q$ is positive-definite
- Q : principal directions
- Eigenvalues: how rapidly spreads along each principal direction
- $K(M):=\int_{\mathrm{SU}(2)} \exp \left(q^{T} M q\right) d q$ depends only on eigenvalues
- Claim $2 \mathrm{LD}\left(\pi\left(q_{0}\right), \Sigma\right) \approx \mathrm{BH}(M)$
- Numerically verified for some isotropic cases [1]

Direction Measurement (1)

- Let $R \sim \mathrm{BH}(M), V=R h+U$ for some $h \in \mathbb{R}^{3}$ and $U \sim \mathrm{~N}\left(0, \sigma^{2} \mathbf{1}\right)$
- What is the conditional distribution $R \mid V$?
- Bayes' rule: $f_{R \mid V}(r \mid v)=\frac{f_{V \mid R}(v \mid r) f_{R}(r)}{f_{V}(v)}$
- $(V \mid R=r) \sim \mathrm{N}(r h, \Sigma)$, so $f_{R \mid V}(r \mid v) \propto$

Direction Measurement (1)

- Let $R \sim \mathrm{BH}(M), V=R h+U$ for some $h \in \mathbb{R}^{3}$ and $U \sim \mathrm{~N}\left(0, \sigma^{2} \mathbf{1}\right)$
- What is the conditional distribution $R \mid V$?

Direction Measurement (1)

- Let $R \sim \mathrm{BH}(M), V=R h+U$ for some $h \in \mathbb{R}^{3}$ and $U \sim \mathrm{~N}\left(0, \sigma^{2} \mathbf{1}\right)$
- What is the conditional distribution $R \mid V$?
- Bayes' rule: $f_{R \mid V}(r \mid v)=\frac{f_{V \mid R}(v \mid r) f_{R}(r)}{f_{V}(v)}$

Direction Measurement (1)

- Let $R \sim \mathrm{BH}(M), V=R h+U$ for some $h \in \mathbb{R}^{3}$ and $U \sim \mathrm{~N}\left(0, \sigma^{2} \mathbf{1}\right)$
- What is the conditional distribution $R \mid V$?
- Bayes' rule: $f_{R \mid V}(r \mid v)=\frac{f_{V \mid R}(v \mid r) f_{R}(r)}{f_{V}(v)}$
- $(V \mid R=r) \sim \mathrm{N}(r h, \Sigma)$, so $f_{R \mid V}(r \mid v) \propto$

$$
\begin{gathered}
\exp \left(-\frac{\left\|v-q h q^{-1}\right\|^{2}}{2 \sigma^{2}}\right) \exp \left(q^{T} M q\right)=\exp \left(q^{T}\left(M+M_{1}\right) q\right) \text { where } \\
M_{1}:=-\frac{1}{2 \sigma^{2}}\left[\begin{array}{cc}
\|v-h\|^{2} & 2(v \times h)^{T} \\
2(v \times h)^{T} & \|v+h\|^{2} \mathbf{1}-2\left(v h^{T}+h v^{T}\right)
\end{array}\right]
\end{gathered}
$$

Direction Measurement (2)

- In general, for $V_{i}=R h_{i}+U_{i}, i=1, \cdots, n$, define

$$
M_{i}:=-\frac{1}{2 \sigma_{i}^{2}}\left[\begin{array}{cc}
\left\|v_{i}-h_{i}\right\|^{2} & 2\left(v_{i} \times h_{i}\right)^{T} \\
2\left(v_{i} \times h_{i}\right)^{T} & \left\|v_{i}+h_{i}\right\|^{2} \mathbf{1}-2\left(v_{i} h_{i}^{T}+h_{i} v_{i}^{T}\right)
\end{array}\right],
$$

then

$$
\left(R \mid V_{1}=v_{1}, \cdots, V_{n}=v_{n}\right) \sim \mathrm{BH}\left(M+\sum_{i=1}^{n} M_{i}\right)
$$

Update Using Accelerometer and Magnetometer

- System model:
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Update procedure:
(1) Approximate the distribution of $R_{1} \mid G_{1}$ as $\mathrm{BH}(M)$
(2) Calculate M_{1}, M_{2} for A_{1}, M_{1}
(0) Then the distribution of $R_{1} \mid G_{1}, A_{1}, M_{1}$ is approximately $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$
(9) Approximate $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$ as $\mathrm{LD}(r, \Sigma)$

Update Using Accelerometer and Magnetometer

- System model:
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Update procedure:
(1) Approximate the distribution of $R_{1} \mid G_{1}$ as $\mathrm{BH}(M)$
(2) Calculate M_{1}, M_{2} for A_{1}, M_{1}
(3) Then the distribution of $R_{1} \mid G_{1}, A_{1}, M_{1}$ is approximately $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$
(4) Approximate $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$ as $\mathrm{LD}(r, \Sigma)$

Update Using Accelerometer and Magnetometer

- System model:
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Update procedure:
(1) Approximate the distribution of $R_{1} \mid G_{1}$ as $\mathrm{BH}(M)$
(3) Then the distribution of $R_{1} \mid G_{1}, A_{1}, M_{1}$ is approximately
(c) Approximate $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$ as $\mathrm{LD}(r, \Sigma)$

Update Using Accelerometer and Magnetometer

- System model:
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Update procedure:
(1) Approximate the distribution of $R_{1} \mid G_{1}$ as $\mathrm{BH}(M)$
(2) Calculate M_{1}, M_{2} for A_{1}, M_{1}
(3) Then the distribution of $R_{1}, G_{1}, A_{1}, M_{1}$ is approximately $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$
(c) Approximate $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$ as $\mathrm{LD}(r, \Sigma)$

Update Using Accelerometer and Magnetometer

- System model:
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Update procedure:
(1) Approximate the distribution of $R_{1} \mid G_{1}$ as $\mathrm{BH}(M)$
(2) Calculate M_{1}, M_{2} for A_{1}, M_{1}
(3) Then the distribution of $R_{1} \mid G_{1}, A_{1}, M_{1}$ is approximately $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$
(© Approximate $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$ as $\operatorname{LD}(r, \Sigma)$

Update Using Accelerometer and Magnetometer

- System model:
- $A_{k}=R_{k} \mathbf{a}+V_{k}$
- $M_{k}=R_{k} \mathbf{m}+W_{k}$
- Update procedure:
(1) Approximate the distribution of $R_{1} \mid G_{1}$ as $\mathrm{BH}(M)$
(2) Calculate M_{1}, M_{2} for A_{1}, M_{1}
(3) Then the distribution of $R_{1} \mid G_{1}, A_{1}, M_{1}$ is approximately $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$
(9) Approximate $\mathrm{BH}\left(M+M_{1}+M_{2}\right)$ as $\mathrm{LD}(r, \Sigma)$

Algorithm Summary (1)

- Input: initial distribution, noise variances, constant vectors \mathbf{a}, \mathbf{m}
- Output: \bar{r}
- Initialize $\bar{r} \leftarrow \bar{r}_{0}, \Sigma \leftarrow \Sigma_{0}, \bar{\omega} \leftarrow \bar{\omega}_{0}, \sigma_{\Omega}^{2} \leftarrow \sigma_{\Omega, 0}^{2}$
- For each time instance,
(1) Get measurements (g, a, m)
(2) Update using g :

$$
\begin{aligned}
& \bar{r} \leftarrow \exp \left(-\left[\frac{\left(\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}\right) \bar{\omega}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}}+\frac{\sigma_{\Omega}^{2} g}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}}\right]_{\times} \Delta t\right) \bar{r} \\
& \Sigma
\end{aligned} \leftarrow \Sigma+\frac{\left(\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}\right) \sigma_{\Omega}^{2} \Delta t^{2}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}} \mathbf{1} \quad \begin{aligned}
& \bar{\omega} \leftarrow \frac{\sigma_{U}^{2} \bar{\omega}}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}}+\frac{\left(\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}\right) g}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}} \\
& \sigma_{\Omega}^{2} \leftarrow \frac{\sigma_{U}^{2}\left(\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}\right)}{\sigma_{U}^{2}+\sigma_{A}^{2} \Delta t^{2}+\sigma_{\Omega}^{2}}
\end{aligned}
$$

Algorithm Summary (1)

- Input: initial distribution, noise variances, constant vectors \mathbf{a}, \mathbf{m}
- Output: \bar{r}
- For each time instance,
(3) Update using a, m :
- Let $M_{1}:=\left[\begin{array}{c}-\frac{\|a-\mathbf{a}\|^{2}}{2 \sigma_{V}^{2}}-\frac{\|m-\mathbf{m}\|^{2}}{2 \sigma_{W}^{2}} \\ \frac{\mathbf{a} \times a}{\sigma_{V}^{2}}+\frac{\mathbf{m} \times m}{\sigma_{W}^{2}}\end{array}\right.$

$$
\left.\begin{array}{c}
\left(\frac{\mathbf{a} \times a}{\sigma_{V}^{2}}+\frac{\mathbf{m} \times m}{\sigma_{W_{T}}^{2}}\right)^{T} \\
\frac{a_{\mathbf{a}^{T}+\mathbf{a} \mathbf{a}^{T}}}{\sigma_{V}^{2}}+\frac{m \mathbf{m}^{T}+\mathbf{m} m^{T}}{\sigma_{W}^{2}} \\
-\left(\frac{\|a+\mathbf{a}\|^{2}}{2 \sigma_{V}^{2}}+\frac{\|m+\boldsymbol{m}\|^{2}}{2 \sigma_{W}^{2}}\right) \mathbf{1}
\end{array}\right]
$$

- Find $q_{0} \in \mathrm{SU}(2)$ with $\pi\left(q_{0}\right)=\bar{r}$
- Let $M_{2}:=Q_{L}\left(q_{0}\right)\left[\begin{array}{cc}0 & 0 \\ 0 & -\frac{1}{2} \Sigma^{-1}\end{array}\right] Q_{L}\left(q_{0}^{-1}\right)$
- Find (\bar{r}, Σ) such that $\operatorname{LD}(\bar{r}, \Sigma) \approx \operatorname{BH}\left(M_{1}+M_{2}\right)$

Attitude Tracking

Discussions

- Why (a, m) are used only for updating R but not Ω ?
- Incorrect independence assumption $R_{k} \perp \Omega_{k}$
- Consideration of gyroscope bias and accel./magnet. disturbance
- Do claims really hold?
- Extension to $\mathrm{SE}(3)$?

Discussions

- Why (a, m) are used only for updating R but not Ω ?
- Incorrect independence assumption $R_{k} \perp \Omega_{k}$
- Consideration of gyroscope bias and accel./magnet. disturbance
- Do claims really hold?
- Extension to $\mathrm{SE}(3)$?

Discussions

- Why (a, m) are used only for updating R but not Ω ?
- Incorrect independence assumption $R_{k} \perp \Omega_{k}$
- Consideration of gyroscope bias and accel./magnet. disturbance
- Do claims really hold?
- Extension to $\mathrm{SE}(3)$?

Discussions

- Why (a, m) are used only for updating R but not Ω ?
- Incorrect independence assumption $R_{k} \perp \Omega_{k}$
- Consideration of gyroscope bias and accel./magnet. disturbance
- Do claims really hold?
- Extension to $\mathrm{SE}(3)$?

Discussions

- Why (a, m) are used only for updating R but not Ω ?
- Incorrect independence assumption $R_{k} \perp \Omega_{k}$
- Consideration of gyroscope bias and accel./magnet. disturbance
- Do claims really hold?
- Extension to $\mathrm{SE}(3)$?

Discussions

- Why (a, m) are used only for updating R but not Ω ?
- Incorrect independence assumption $R_{k} \perp \Omega_{k}$
- Consideration of gyroscope bias and accel./magnet. disturbance
- Do claims really hold?
- Extension to $\mathrm{SE}(3)$?

Thank you.

References

S. Matthies, J. Muller, and G. W. Vinel.

On the normal distribution in the orientation space. Textures \& Microstructures, 10:77-96, 1988.
R D. I. Nikolayev and T. I. Savyolova. Normal distribution on the rotation group $\mathrm{SO}(3)$. Textures \& Microstructures, 29:201-233, 1997.

Derivation of Kalman Filter (1)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Denote $\hat{X}_{k \mid k}:=\mathrm{E}\left[X_{k} \mid Y_{1}^{k}\right]$
- Define the innovation sequence

- From Gaussian assumption, one can show that $Y_{1}^{k-1} \perp \tilde{Y}_{k}$

Derivation of Kalman Filter (1)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Denote $\hat{X}_{k \mid k}:=\mathrm{E}\left[X_{k} \mid Y_{1}^{k}\right]$
- Define the innovation sequence

- From Gaussian assumption, one can show that $Y_{1}^{k-1} \perp \tilde{Y}_{k}$

Derivation of Kalman Filter (1)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Denote $\hat{X}_{k \mid k}:=\mathrm{E}\left[X_{k} \mid Y_{1}^{k}\right]$
- Define the innovation sequence

$$
\begin{aligned}
\tilde{Y}_{k} & :=Y_{k}-\mathrm{E}\left[Y_{k} \mid Y_{1}^{k-1}\right] \\
& =Y_{k}-H \mathrm{E}\left[X_{k} \mid Y_{1}^{k-1}\right]
\end{aligned}
$$

Derivation of Kalman Filter (1)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Denote $\hat{X}_{k \mid k}:=\mathrm{E}\left[X_{k} \mid Y_{1}^{k}\right]$
- Define the innovation sequence

$$
\begin{aligned}
\tilde{Y}_{k} & :=Y_{k}-\mathrm{E}\left[Y_{k} \mid Y_{1}^{k-1}\right] \\
& =Y_{k}-H \mathrm{E}\left[X_{k} \mid Y_{1}^{k-1}\right]
\end{aligned}
$$

- From Gaussian assumption, one can show that $Y_{1}^{k-1} \perp \tilde{Y}_{k}$

Derivation of Kalman Filter (2)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Denote $\hat{X}_{k \mid k-1}:=\mathrm{E}\left[X_{k} \mid Y_{1}^{k-1}\right]$ so that $\tilde{Y}_{k}=Y_{k}-H \hat{X}_{k \mid k-1}$
- One can show that if (X, Y, Z) are jointly Gaussian and $X \perp Y$ then

$$
\mathrm{E}[Z \mid X, Y]=\mathrm{E}[Z \mid X]+\mathrm{E}[Z \mid Y]-\mathrm{E}[Z]
$$

Derivation of Kalman Filter (2)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Denote $\hat{X}_{k \mid k-1}:=\mathrm{E}\left[X_{k} \mid Y_{1}^{k-1}\right]$ so that $\tilde{Y}_{k}=Y_{k}-H \hat{X}_{k \mid k-1}$
- One can show that if (X, Y, Z) are jointly Gaussian and $X \perp Y$ then

$$
\mathrm{E}[Z \mid X, Y]=\mathrm{E}[Z \mid X]+\mathrm{E}[Z \mid Y]-\mathrm{E}[Z],
$$

so

$$
\hat{X}_{k \mid k}=\mathrm{E}\left[X_{k} \mid Y_{1}^{k}\right]=\hat{X}_{k \mid k-1}+\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]
$$

Derivation of Kalman Filter (3)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $\hat{X}_{k \mid k-1}=\mathrm{E}\left[X_{k} \mid Y_{1}^{k-1}\right]=F \mathrm{E}\left[X_{k-1} \mid Y_{1}^{k-1}\right]=F \hat{X}_{k-1 \mid k-1}$
- Need to know $\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]$
- According to a well-known formula for jointly Gaussian r.v.s:
$\mathrm{E}\left[X_{k} \mid \tilde{\tilde{Y}}_{k}\right]=\mathrm{E}\left[X_{k} \tilde{Y}_{k}^{-T_{k}}\right] \mathrm{E}\left[\tilde{\mathrm{Y}}_{k} \tilde{Y}_{k}^{T_{3}}\right]^{-1} \tilde{\mathrm{Y}}_{k}$

Derivation of Kalman Filter (3)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $\hat{X}_{k \mid k-1}=\mathrm{E}\left[X_{k} \mid Y_{1}^{k-1}\right]=F \mathrm{E}\left[X_{k-1} \mid Y_{1}^{k-1}\right]=F \hat{X}_{k-1 \mid k-1}$
- Need to know $\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]$
- According to a well-known formula for jointly Gaussian r.v.s: $\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]=\mathrm{E}\left[X_{k} \tilde{Y}_{k}^{T}\right] \mathrm{E}\left[\tilde{Y}_{k} \tilde{Y}_{k}^{T}\right]^{-1} \tilde{Y}_{k}$

Derivation of Kalman Filter (3)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $\hat{X}_{k \mid k-1}=\mathrm{E}\left[X_{k} \mid Y_{1}^{k-1}\right]=F \mathrm{E}\left[X_{k-1} \mid Y_{1}^{k-1}\right]=F \hat{X}_{k-1 \mid k-1}$
- Need to know $\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]$
- According to a well-known formula for jointly Gaussian r.v.s:

$$
\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]=\mathrm{E}\left[X_{k} \tilde{Y}_{k}^{T}\right] \mathrm{E}\left[\tilde{Y}_{k} \tilde{Y}_{k}^{T}\right]^{-1} \tilde{Y}_{k}
$$

Derivation of Kalman Filter (4)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $\tilde{Y}_{k}=Y_{k}-\mathrm{E}\left[Y_{k} \mid Y_{1}^{k-1}\right]=H\left(X_{k}-\hat{X}_{k \mid k-1}\right)+U_{k}$, so
- $\mathrm{E}\left[\tilde{Y}_{k} \tilde{Y}_{k}^{T}\right]=H P_{k \mid k-1} H^{T}+R$, where
- $P_{k \mid k-1}:=\mathrm{E}\left[\left(X_{k}-\hat{X}_{k \mid k-1}\right)\left(X_{k}-\hat{X}_{k \mid k-1}\right)^{T}\right]$
- This is the prediction uncertainty
- Again from independence, $\mathrm{E}\left[X_{k} \tilde{Y}_{k}^{T}\right]=P_{k \mid k-1} H^{T}$

Derivation of Kalman Filter (4)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $\tilde{Y}_{k}=Y_{k}-\mathrm{E}\left[Y_{k} \mid Y_{1}^{k-1}\right]=H\left(X_{k}-\hat{X}_{k \mid k-1}\right)+U_{k}$, so
- $\mathrm{E}\left[\tilde{Y}_{k} \tilde{Y}_{k}^{T}\right]=H P_{k \mid k-1} H^{T}+R$, where
- $P_{k \mid k-1}:=\mathrm{E}\left[\left(X_{k}-\hat{X}_{k \mid k-1}\right)\left(X_{k}-\hat{X}_{k \mid k-1}\right)^{T}\right]$
- This is the prediction uncertainty
- Again from independence, $\mathrm{E}\left[X_{k} \tilde{Y}_{k}^{T}\right]=P_{k \mid k-1} H^{T}$

Derivation of Kalman Filter (4)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $\tilde{Y}_{k}=Y_{k}-\mathrm{E}\left[Y_{k} \mid Y_{1}^{k-1}\right]=H\left(X_{k}-\hat{X}_{k \mid k-1}\right)+U_{k}$, so
- $\mathrm{E}\left[\tilde{Y}_{k} \tilde{Y}_{k}^{T}\right]=H P_{k \mid k-1} H^{T}+R$, where
- $P_{k \mid k-1}:=\mathrm{E}\left[\left(X_{k}-\hat{X}_{k \mid k-1}\right)\left(X_{k}-\hat{X}_{k \mid k-1}\right)^{T}\right]$
- This is the prediction uncertainty
- Again from independence, $\mathrm{E}\left[X_{k} \tilde{Y}_{k}^{T}\right]=P_{k \mid k-1} H^{T}$

Derivation of Kalman Filter (5)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Hence,

$$
\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]=K_{k} \tilde{Y}_{k}
$$

where

- $K_{k}:=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- This is called the Kalman gain
- We are to find the prediction uncertainty $P_{k \mid k-1}:=\mathrm{E}\left[\left(X_{k}-\hat{X}_{k \mid k-1}\right)\left(X_{k}-\hat{X}_{k \mid k-1}\right)^{T}\right]$ from now on

Derivation of Kalman Filter (5)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Hence,

$$
\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]=K_{k} \tilde{Y}_{k}
$$

where

- $K_{k}:=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- This is called the Kalman gain
- We are to find the prediction uncertainty
$P_{k \mid k-1}:=\mathrm{E}\left[\left(X_{k}\right.\right.$

Derivation of Kalman Filter (5)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- Hence,

$$
\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]=K_{k} \tilde{Y}_{k}
$$

where

- $K_{k}:=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- This is called the Kalman gain
- We are to find the prediction uncertainty
$P_{k \mid k-1}:=\mathrm{E}\left[\left(X_{k}-\hat{X}_{k \mid k-1}\right)\left(X_{k}-\hat{X}_{k \mid k-1}\right)^{T}\right]$ from now on

Derivation of Kalman Filter (6)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $X_{k}-\hat{X}_{k \mid k-1}=F\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)+W_{k}$, so

$$
P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q
$$

where

- $P_{k-1 \mid k-1}:=\mathrm{E}\left[\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)^{T}\right]$
- This is the estimation uncertainty
- From $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+\mathrm{E}\left[X_{k} \mid Y_{k}\right]$, one can derive the formula

Derivation of Kalman Filter (6)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $X_{k}-\hat{X}_{k \mid k-1}=F\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)+W_{k}$, so

$$
P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q
$$

where

- $P_{k-1 \mid k-1}:=\mathrm{E}\left[\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)^{T}\right]$
- This is the estimation uncertainty

Derivation of Kalman Filter (6)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- $X_{k}-\hat{X}_{k \mid k-1}=F\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)+W_{k}$, so

$$
P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q
$$

where

- $P_{k-1 \mid k-1}:=\mathrm{E}\left[\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)\left(X_{k-1}-\hat{X}_{k-1 \mid k-1}\right)^{T}\right]$
- This is the estimation uncertainty
- From $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+\mathrm{E}\left[X_{k} \mid \tilde{Y}_{k}\right]$, one can derive the formula

$$
P_{k \mid k}=\left(\mathrm{I}-K_{k} H\right) P_{k \mid k-1}
$$

Derivation of Kalman Filter (7)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- In summary, the overall procedure is done in two phases:
(1) Prediction phase: compute $X_{k \mid k-1}, P_{k \mid k-1}$ from $X_{k-1 \mid k-1}$, $P_{k-1 \mid k-1}$ using the formulas
(2) Update phase: compute $\hat{X}_{k \mid k}, P_{k \mid k}$ from $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$, and Y_{k} using the formulas

Derivation of Kalman Filter (7)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- In summary, the overall procedure is done in two phases:
(1) Prediction phase: compute $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$ from $\hat{X}_{k-1 \mid k-1}$, $P_{k-1 \mid k-1}$ using the formulas
- $\hat{X}_{k \mid k-1}=F \hat{X}_{k-1 \mid k-1}$
- $P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q$

Derivation of Kalman Filter (7)

- System model:
- $X_{k}=F X_{k-1}+W_{k}$
- $Y_{k}=H X_{k}+U_{k}$
- To compute: $\mathrm{E}\left[X_{k} \mid Y_{1}, \cdots, Y_{k}\right]$
- In summary, the overall procedure is done in two phases:
(1) Prediction phase: compute $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$ from $\hat{X}_{k-1 \mid k-1}$, $P_{k-1 \mid k-1}$ using the formulas
- $\hat{X}_{k \mid k-1}=F \hat{X}_{k-1 \mid k-1}$
- $P_{k \mid k-1}=F P_{k-1 \mid k-1} F^{T}+Q$
(2) Update phase: compute $\hat{X}_{k \mid k}, P_{k \mid k}$ from $\hat{X}_{k \mid k-1}, P_{k \mid k-1}$, and Y_{k} using the formulas
- $K_{k}=P_{k \mid k-1} H^{T}\left(H P_{k \mid k-1} H^{T}+R\right)^{-1}$
- $\hat{X}_{k \mid k}=\hat{X}_{k \mid k-1}+K_{k}\left(Y_{k}-H \hat{X}_{k \mid k-1}\right)$
- $P_{k \mid k}=\left(\mathrm{I}-K_{k} H\right) P_{k \mid k-1}$

