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Section 1

Kalman Filter

Figure 1: Rudolf Emil Kalman (May 19, 1930 - July 2, 2016)
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Goal

@ Tracking problem

e Find the state of a dynamical system, given the history of
observations of the system

o Filtering: find the present state
e Smoothing: find past states
e Prediction: find future states

@ Control problem

e Try to make a dynamical system into a desired state by applying
certain actions, given the history of observations of the system

@ States, observations, and actions are in some multi-dimensional
continua
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Example of System Model

By By,
Xe—1 X Kie+1
fXi-1,Br-1) f Xk, Bi)
l h(Xy-1) l h(X) J h(Xj+1)
Yieq Y Yier1

Figure 2: Discrete-Time Control System

X}.: system’s state at the kth time instance
By.: controller’s action at the kth time instance

Y}.: observation of the system at the kth time instance
4/52
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Approaches

@ Deterministic approaches

e “Solve" the equations
e Minimize corresponding “cost function”

@ Probabilistic approaches
e Parametric vs. Non-parametric

@ Parametric: assumes certain “form” of probability measures
o Non-parametric: try to find the probability measure itself

o Bayesian vs. Non-Bayesian

o Bayesian: parameter itself is a random variable
o Non-Bayesian: parametr is a fixed unknown constant

@ Kalman's approach: parametric Bayesian
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Kalman Filter (1)

@ Goal: estimate the state of a system given by a time-series
(Xk)pe, from observations (Y)p

6/52



Kalman Filter

Attitude Tracking
000 00000000
90000 000000000
000 000
000000

[e]e]e}

Kalman Filter (1)
@ Goal: estimate the state of a system given by a time-series

(Xk)pe, from observations (Y)p
@ Assumptions:

6/52



Kalman Filter Attitude Tracking

Kalman Filter (1)

@ Goal: estimate the state of a system given by a time-series
(Xk)pe, from observations (Y)p
@ Assumptions:
o The system evolves linearly: X}, = F X, 1 + W,

@ F': a known, fixed linear transformation
@ Wj: process noise, driving the system randomly
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Kalman Filter (1)

@ Goal: estimate the state of a system given by a time-series
(Xk)pe, from observations (Y)p
@ Assumptions:
o The system evolves linearly: X}, = F X, 1 + W,
@ F': a known, fixed linear transformation
@ Wj: process noise, driving the system randomly
e The observation is derived linearly from the state: Y, = HX + Uy
@ H: a known, fixed linear transformation
o Uj: measurement noise, making the observation imprecise
o Further assumptions:
o Xo, Wi's, Ug's are all independent and all zero-mean Gaussian

e Wy's are identically distributed w/ covariance @
e Uy's are identically distributed w/ covariance R
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Example - Speed Camera

@ Want to know: the speed of the car

@ Observed: the position of the car
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@ Want to know: the speed of the car

@ Observed: the position of the car

0 ]

e Py: position at t = kAt
o Vj: average velocity between t = kAt and t = (k + 1)At
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@ Want to know: the speed of the car

@ Observed: the position of the car

e[

e Py: position at t = kAt
o Vj: average velocity between t = kAt and t = (k + 1)At

[l =lo S]]+ L

e A;: random acceleration of the car
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Example - Speed Camera

@ Want to know: the speed of the car
@ Observed: the position of the car

_ | Px
° A= [V%}

e Py: position at t = kAt
o Vj: average velocity between t = kAt and t = (k + 1)At

o Pyl |1 At]| |Pr—y n 0
Vil 10 1] Vi ARAt
e A;: random acceleration of the car

oY, =[1 0] [€z} + Uy

o Uy: sensor noise
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Kalman Filter (2)

@ What is the “best” estimate of X, given Y7, --- ,Y;7?
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Kalman Filter (2)

@ What is the “best” estimate of X, given Y7, --- ,Y;7?

@ Since we are doing Bayesian estimate, average cost is the concern
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@ What is the “best” estimate of X, given Y7, --- ,Y;7?

@ Since we are doing Bayesian estimate, average cost is the concern

Theorem 1

Given L?-r.v. X and a r.v. Y, a conditional expectation of X given Y
is an MMSE (Minimum Mean-Square Error) estimate of X given Y,
that is, for any measurable function f :)Y — X,

B |1X - BXY]I?| < E[IX - /()
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Kalman Filter (2)

@ What is the “best” estimate of X, given Y7, --- ,Y;7?

@ Since we are doing Bayesian estimate, average cost is the concern

Theorem 1

Given L?-r.v. X and a r.v. Y, a conditional expectation of X given Y
is an MMSE (Minimum Mean-Square Error) estimate of X given Y,
that is, for any measurable function f :)Y — X,

B |1X - BXY]I?| < E[IX - /()

o Suffices to find E[X|Y7, -+, Y]
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Kalman Filter (3)

by by
If (X1, X3) ~N Nl][ 11 12]>,th
¢ IF (% X0) <[H2 Y91 Yoo en

(X1|X2 = .7}2) ~ N (:ul + 21222_21(.7}2 — ILLQ), Y11 — 21222_21221)
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Kalman Filter (3)

by by
If (X1, X5) ~ N ’“] [ 1 12D,th
° If (X1, X2) <[H2 o1 Y22 "

(X1 X2 = x9) ~ N (1 + Y1250 (22 — pi2), 11 — Z31222_21221)

@ What's the matter?
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by by
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Kalman Filter (3)

by by
If (X1, X5) ~ N ’“] [ 1 12D,th
° If (X1, X2) <[M2 o1 Y22 "

(X1 X2 = 32) ~ N (1 + Z12555 (22 — p2), T11 — S12555 o1

@ What's the matter?
o Intractable to directly calculate E[X|Y7, -+ , Y]

@ Infinite (indefinitely growing) memory requirement
e Joint distribution of (X, Y1, --- ,Y}) is too complicated

@ Have to “summarize” the results before taking Y} into account
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Kalman Filter (3)

by by
If (X1, X5) ~ N ’“] [ 1 12D,th
° If (X1, X2) <[M2 o1 Y22 "

(X1 X2 = 32) ~ N (1 + Z12555 (22 — p2), T11 — S12555 o1

@ What's the matter?
o Intractable to directly calculate E[X|Y7, -+ , Y]

@ Infinite (indefinitely growing) memory requirement
e Joint distribution of (X, Y1, --- ,Y}) is too complicated

@ Have to “summarize” the results before taking Y} into account
@ It turns out, Xk_l‘k_l = E[Xk_1|Y1, -+ ,Yr_1] and
. 0 0 T
P k-1 = E[(Xg—1 — Xp—1jp—1) (Xp—1 — Xp_1jp—1)" ] are
sufficient summaries
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Kalman Filter (4)

@ System model:
o Xp =FXp1+ W
o Yy =HXy+ Uy

e To compute: E[X|Y7, --- ,Y}]
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Kalman Filter (4)

@ System model:
o X =FXp_ 1 +W;
o V., = HX; + U
@ To compute: E[X|Y7, -+ ,Y}]

@ Prediction phase: compute Xk|k_1, Ppj—1 from Xk,_l‘k_l,
Py _1|—1 using the formulas
o Xpjpo1=FXp_ 151
o Pypo1=FP 1 FT+Q
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Kalman Filter (4)

@ System model:
o X =FXp_ 1 +W;
o V., = HX; + U
@ To compute: E[X|Y7, -+ ,Y}]

@ Prediction phase: compute Xk‘k_l, Ppj—1 from Xk,_l‘k_l,
Py _1|—1 using the formulas
o Xppo1=FXp 1p
o Pypo1=FP 1 FT+Q
© Update phase: compute Xk|k, Pyj, from Xk|k,1, Pyjk—1, and Yy
using the formulas
othﬂle(HﬂleT+m
o Xk = Xpppo1 + Ki(Yi — HXppp—1)
o Py =~ KyH)Pyr1
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@ Good things

o Computationally cheap; several matrix multiplications and an
inversion
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Good Things and Bad Things

@ Good things
o Computationally cheap; several matrix multiplications and an
inversion
e Small memory requirement; only necessary to remember Xk‘k and
Py
e Optimal w.r.t. MSE

@ Bad things
e Too limited applications

@ Without further assumptions: lose optimality
o Linear system? Extremely rare...
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How to Go Beyond? (1)

@ System model:
o Xy =FXp_1+Wy
o Vi =HX; + U
o Filtering process:
@ Prediction phase:
o Xpp—1=FXj 1)t
® Pypo1=FPo 11 FT+Q
@ Update phase:
o Ky =Pyp1H (HPyp_1H" + R)™"
° Xklk = Xk\kﬂ + Ki(Yr — HXk|k,1)
o Py =(1— KxH)Pyr_1
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How to Go Beyond? (1)

@ System model:
o X = FXyp_1+ W,
o Vi =HX; + U
o Filtering process:
© Prediction phase:
° Xk|k—1 = FXk—l\k—l
® Pyt = FPo1p1 FT +Q
© Update phase:
o Ky = Pyx1H (HPy—1H" + R)™!
° Xk“c = Xk\kﬂ + Ki(Yi — HXk|k71)
o Pk\k = (I bl KkH)PkUcfl
@ Observation: no difference when F, H can vary over time, if we
know them exactly
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How to Go Beyond? (1)

System model:
o X = FXyp_1+ W,
o Vi =HX; + U
Filtering process:
© Prediction phase:
° Xk|k—1 = FXk—l\k—l
® Pyt = FPo1p1 FT +Q
© Update phase:
o Ky = Pyx1H (HPy—1H" + R)™!
° Xk“c = Xk\kfl + Ki(Yi — HXk|k71)
o Pk\k = (I bl KkH)PkUcfl
@ Observation: no difference when F, H can vary over time, if we
know them exactly

Replace F to Dkaillki
= Extended Kalman Filter (EKF)

1,Ht0DhA

Xklk—1
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How to Go Beyond? (2)

@ Problems of EKF

o VERY sensitive when X approaches to singularities

e Calculation of the Jacobian matrices could be extremely
complicated

e Cannot force constraints

@ There are other alternatives:
o Unscented Kalman Filter (UKF)
o Particle Filter
e Moving Horizon Filter
o Etc...
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Attitude Tracking

Figure 3: Olinde Rodrigues (October 6, 1795 - December 17, 1851)
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Problem Definition (1)

@ What “attitude” means?

e The coordinates of three frame vectors with respect to the global
coordinate system

Figure 4: Frame vectors
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Problem Definition (2)

@ What “attitude” means?

o (Frame vectors) = (Rotation matrix)

ori=le, e e

o (Rotation matrix) = (Orthogonal matrix w/ det.=1)

e The set of orthogonal matrices w/ det.=1 is called the special
orthogonal group and denoted as SO(3)
o In summary, we are to find an element in SO(3)
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Problem Definition (3)

@ What we have?

o Inertial Measurement Unit (IMU): combination of the following
three sensors:

o Gyroscope: measures angular velocity
@ Accelerometer: measures acceleration
o Magnetometer: measures magnetic field

Pitch Axis

Roll Axis

Yaw Axis
+Roll

Figure 5: The output of gyroscope sensors
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Problem Definition (3)

@ What we have?
o Inertial Measurement Unit (IMU): combination of the following
three sensors:

o Gyroscope: measures angular velocity
@ Accelerometer: measures acceleration
o Magnetometer: measures magnetic field

o Accelerometer measures the gravity

e Magnetometr measures the heading; think of compass

Pitch Axis

Roll Axis

Yaw Axis
+Roll

Figure 5: The output of gyroscope sensors
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Problem Definition (4)

@ Gyroscope measures change of frame vectors with respect to the
local frame vectors

1 0 0
rel = |0| +wsAt |1]| —w2At |0
10 10 1]
[0] [0] 1]
reh = |1| +wiAt |0 —wsAt |0
10 1] 10]
[0] 1] [0]
reé ~ |0] +waAt |0 —wiAt |1
11] 10 10
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Problem Definition (5)

@ Gyroscope measures change of frame vectors with respect to the
local frame vectors

0 —ws W2
~I1+ | ws 0 —w | At
—Ww?2 w1 0

@ Hence, 7(7")T ~ exp ([w]x At), ' = exp (—[w]x At) r
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Problem Definition (6)

@ Evolution equations:

Attitude R; = eXp(f[Qk_l]XAt)Rk_l
Angular velocity Qp = Q1 + AgAt

where A}, is a random process noise
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Problem Definition (6)

@ Evolution equations:

Attitude R; = eXp(f[Qk_l]XAt)Rk_l
Angular velocity Q, = Q1 + AgAt

where A}, is a random process noise

@ Measurement equations:
Gyroscope G = Qi + Uy
Accelerometer Ay = Riya+ Vj
Magnetometer M) = Rym + W
where Uy, Vi, W}, are random measurement noises, a the constant
gravity vector, and m the constant Earth magnetic field vector
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Problem Definition (6)

@ Evolution equations:
Attitude Ry = eXp(f[Qk_l]XAt)Rk_l
Angular velocity Q) = Q1 + AR At
where A}, is a random process noise

@ Measurement equations:
Gyroscope G = Qi + Uy
Accelerometer Ay = Riya+ Vj
Magnetometer M) = Rym + W
where Uy, Vi, W}, are random measurement noises, a the constant
gravity vector, and m the constant Earth magnetic field vector

@ Valid only when
e There is no rapid movement
e There is no magnetic disturbance
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Problem Definition (7)

@ System model:
o Ry =exp(—[Q_1]xAt) Ry

o O =01+ ArAt
o G =0+ Uy

o A, = Rra+V;

o My = Rym + Wy,
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Problem Definition (7)

@ System model:
o Ry =exp(—[Q_1]xAt) Ry

o O =01+ ArAt
o G =0+ Uy

o A, = Rra+V;

o My = Rm+ Wy

o Goal: find Ry, given Y/, where Y}, := (G, Ag, My,)
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Problem Definition (7)

@ System model:
o Ry =exp(—[Q_1]xAt) Ry

o O =01+ ArAt
o G =0+ Uy

o A, = Rra+V;

o My = Rm+ Wy

o Goal: find Ry, given Y/, where Y}, := (G, Ag, My,)

@ We may assume Ay, Uy, Vi, Wy, are all independent isotropic i.i.d.
Gaussian process
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State Variables Are Not in R"

@ There is no “conditional expectation”
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State Variables Are Not in R"

@ There is no “conditional expectation”
e But we can find MMSE estimator if we know the conditional
distribution
@ There is no “Gaussian distribution”
e Why Gaussian distribution is so nice?
@ Very stable under various kinds of transformations
e Affine transforms
e Conditioning
e Etc.
o Parametrized
o Physically meaningful
e Central limit theorem
e Brownian motion, heat kernel, diffusion kernel, or related
e Maximum entropy under energy constraint
e Etc.
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Drift-Diffusion Equation (1)
@ What is the most natural generalization of Gaussian measures on Lie
groups?

Theorem 2 (Drift-Diffusion Equation)
The solution f : [0,00) x R™ — C to the differential equation

of (t,x n 8% f(x,t n Of (x,t
fét d = Zm‘:l @ij Bzfi(azj) =2 iz1bi fa(mi )
f(O,I):fo(l’), fO:Rn — C

where A := [a;j] is positive-semidefinite is given as

f(tx) = / Jolx — ) dp(y) = (fo * ) (x)

where p; is the measure given by its Fourier-Stieltjes transform

fu(€) = exp (—2mit (§,b) — 2m%t (¢, AE)).
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Drift-Diffusion Equation (2)

@ Gaussian measures on R™ can be characterized as
o Kernels of drift-diffusion equations, or
o Measures whose Fourier transforms are of the form

(&) = exp (—2mi (€, b) — 27* (€, A€))
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Drift-Diffusion Equation (2)
@ Gaussian measures on R™ can be characterized as

o Kernels of drift-diffusion equations, or
o Measures whose Fourier transforms are of the form

(&) = exp (—2mi (€, b) — 27* (€, A€))

@ Equivalence of the above two characterization is not a coincidence

@ Turns out, the same is true for general Lie groups!
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Some Backgrounds (1)

Definition 3 (Unitary representation)

A unitary representation of a locally compact Hausdorff group G is a
continuous group homomorphism ¢ : G — U(E) into the unitary
group of a Hilbert space E' endowed with the strong operator topology.

Definition 4 (Fourier-Stieltjes transform)

For p € M(G) and a unitary representation £ of G, the
Fourier-Stieltjes transform of p at £ is defined as

AE) = / £(Y) dp(a)
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Some Backgrounds (2)

Definition 5 (Convolution)
For p,v € M(G), the convolution of 1 and v is defined as

M*V:AH//ILA(xy)du(:v) dv(y).

In particular, according to the embedding L'(G) — M (G) with respect to
the right Haar measure,

frp:z e /f(:ry’l)du(y)

Proposition 6
For p,v € M(G) and a unitary representation £ of G,

i v(€) = p(€)Al§)-
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Some Backgrounds (3)

Theorem 7 (Gelfand-Raikov)

A measure i € M(QG) is uniquely determined by values of its
Fourier-Stieltjes transform at irreducible unitary representations; that is,
if 1(§) = 0 for all irreducible unitary representation & of G, then = 0.
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Some Backgrounds (3)

Theorem 7 (Gelfand-Raikov)

A measure i € M(QG) is uniquely determined by values of its
Fourier-Stieltjes transform at irreducible unitary representations; that is,
if 1(§) = 0 for all irreducible unitary representation & of G, then = 0.

@ However, in general, computing 1 from [i(€)’s is very hard, even
when we know the complete list of irreducible unitary
representations
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Drift-Diffusion Equation (3)

Theorem 8

Let G be a Lie group and D be a left-invariant differential operator on G
givenas D = —m + %E, wherem € g and ¥ € U(g) is a degree 2 symmetric
positive-semidefinite element. Then the unique solution to the differential

equation
f(O,x):fo(x), fO:G — C
is given as

f(t.z) = / folwy™) dpe(y) = (fo * ) (),

where p; is the unique measure such that fi; : £ — exp(t&,. D).
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@ The theorem says:
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Drift-Diffusion Equation (4)

@ The theorem says:

e For any &, exp(t£.D) is a well-defined bounded operator on the
Hilber space on which ¢ is defined
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@ The theorem says:
e For any &, exp(t£.D) is a well-defined bounded operator on the
Hilber space on which ¢ is defined
o There uniquely exists a probability measure u; € M(G) having
& — exp(t&« D) as its Fourier-Stieltjes transform
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Drift-Diffusion Equation (4)

@ The theorem says:

e For any &, exp(t£.D) is a well-defined bounded operator on the
Hilber space on which ¢ is defined

o There uniquely exists a probability measure u; € M(G) having
& — exp(t&« D) as its Fourier-Stieltjes transform

o (ftt);>( is the kernel of the left-invariant drift-diffusion equation

Definition 9 (Drift-diffusion measure)

The drift-diffusion measure associated to D is the measure 1, which is
the unique measure satisfying fi; : £ — exp(&.D).
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Left-Translated Diffusion Distribution on SO(3) (1)

@ Let's focus on the case G = SO(3)
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Left-Translated Diffusion Distribution on SO(3) (1)

@ Let's focus on the case G = SO(3)

@ Let us call a measure € M(G) a left-translated diffusion
distribution if fi(€) = exp (1£.5) &(zg!), and denote
= LD(x, )
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@ Let's focus on the case G = SO(3)

@ Let us call a measure € M(G) a left-translated diffusion
distribution if fi(€) = exp (1£.5) &(zg!), and denote
= LD(x, )
e X, a symmetric positive-definite degree 2 element in U(so0(3)) will
play the role of covariance matrix
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@ Let's focus on the case G = SO(3)
@ Let us call a measure € M(G) a left-translated diffusion
distribution if fi(€) = exp (1£.5) &(zg!), and denote
= LD(x, )
e X, a symmetric positive-definite degree 2 element in U(so0(3)) will
play the role of covariance matrix
e xo € G will play the role of mean

@ The case when X = 21, that is, when it is a Casimir element,

o We call u central or isotropic
o For v =LD(yo,%), p* v = LD(zoyo, X + 021)
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Left-Translated Diffusion Distribution on SO(3) (1)

@ Let's focus on the case G = SO(3)
@ Let us call a measure € M(G) a left-translated diffusion
distribution if fi(€) = exp (1£.5) &(zg!), and denote
= LD(x, )
e X, a symmetric positive-definite degree 2 element in U(so0(3)) will
play the role of covariance matrix
e xo € G will play the role of mean
@ The case when X = 21, that is, when it is a Casimir element,

o We call u central or isotropic
o For v =LD(yo,%), p* v = LD(zoyo, X + 021)
e In general, convolution of non-isotropic LD's need not an LD
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Left-Translated Diffusion Distribution on SO(3) (2)
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Left-Translated Diffusion Distribution on SO(3) (2)

@ A kind of central limit theorem hold [2][1]
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Left-Translated Diffusion Distribution on SO(3) (2)

@ A kind of central limit theorem hold [2][1]

@ For isotropic distributions, the pdf can be calculuated numerically

as
1) =3 @+ e (W)

=0 Sin 5

where ¢ is the distance from the center
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Left-Translated Diffusion Distribution on SO(3) (2)

@ A kind of central limit theorem hold [2][1]

@ For isotropic distributions, the pdf can be calculuated numerically

as

oo . 1

1(1+1) sin(l+35)t
£t = S+ e ((. 2) )
sin &

1=0 2

where t is the distance from the center

@ Is xy the MSE estimate when the distribution is LD(z¢, )7
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Update Using Gyroscope (1)

@ System model:
4] Rk = eXp(f[Qk_l]XAt)Rk_l
o O =01+ ArAt
o G =Q+ Uy
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Update Using Gyroscope (1)

@ System model:
o Ry = exp(—[Qr_1]xAt) Ry
o O =01+ ArAt
o G =0, + U,
@ Assume
o RQ 1 QO
o RO ~ LD(’F(), Eo)
4] QO ~ N(@0,06701)
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Update Using Gyroscope (1)

@ System model:

o Ry = exp(—[Qr_1]xAt) Ry

o O =01+ ArAt

o G =0, + U,
@ Assume

o RQ 1 QQ

o RO ~ LD(’F(), Eo)

4] QO ~ N(G)O,Uéﬁl)
o (M|Gi=¢g1)~N <(I)1,O’S2)’11) where

2 A2 2
_ ofwy (UAAt + UQ,0> g1
w1 =
0(2] + O'%At2 + O'?LO 0(2] + U%AtQ + 052-2,0
0'% (U%AtQ + 0?270)
UQ,I =

0[2] + 0'124At2 + O'?LO
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Update Using Gyroscope (2)

@ System model:

o Ry =exp(—[Q_1]xAt) Ry
o O =01+ ArAt
o G =+ Uy

e Similarly, (2|G1 =¢1) ~N (&)0,&%701> where

2 A 42 2\ ~ 2
Do = (GAAt + UU) g 06,091
0'[2] + JiAt2 + 0%70 a?] + aiAtQ + U%’O
2 A 42 2\ 2
o (0AAR +af) 0d
UQ,O :

=3 2 A2 2
UU—I—UAAt + 080
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Update Using Gyroscope (3)

@ System model:

o Ry = exp(—[Qr_1]xAt)Ry_1
o O =1+ ARAt
o G =Qp+ Uy

@ Since G1 — Qo — Rg is a Markov chain and Ry L Qy,
(dist. R1|G1) = (dist. exp(—[Q0]xAt)|G1) * (dist. Rp)
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Update Using Gyroscope (3)

@ System model:

o Ry = exp(—[Qr_1]xAt)Ry_1
o O =1+ ApAt
o G =Qp+ Uy

@ Since G1 — Qo — Rg is a Markov chain and Ry L Qy,
(dist. R1|G1) = (dist. exp(—[Q0]xAt)|G1) * (dist. Rp)
e Claim 1 if @, 0?2 are small enough,

exp, N (@,0°1) ~ LD (exp ([0]«) , 0°1)

34 /52



man Filter

Update Using Gyroscope (3)

@ System model:
o Ry = exp(—[Qr_1]xAt)Ry_1
o O =1+ ApAt
o Gy = O + Uy
@ Since G1 — Qo — Rg is a Markov chain and Ry L Qy,

(dist. R1|G1) = (dist. exp(—[Q0]xAt)|G1) * (dist. Rp)
e Claim 1 if @, 0?2 are small enough,
exp, N (@,0°1) ~ LD (exp ([0]«) , 0°1)
@ Hence, if At is small enough,

(R1|G1 = g1) ~LD (exp (—[@o] x At) ,58,01) = LD (7o, So)
=LD (exp (—[(:}0] x At) T0, 5'52]701 + 20)
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Bingham Distribution (1)

Definition 10 (Bingham distribution)

For a symmetric 4 x 4 real matrix M, the Bingham distribution

associated to M is the probability measure on SU(2) C R* whose pdf
is of the form

flo) = exp (¢" Mq) .
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Bingham Distribution (1)

Definition 10 (Bingham distribution)

For a symmetric 4 x 4 real matrix M, the Bingham distribution
associated to M is the probability measure on SU(2) C R* whose pdf
is of the form

flo) = K(lM) exp (¢" Mq) .

e f(q) = f(—q), thus the pushforward of this measure by the
covering map 7 : SU(2) — SO(3) doubles the pdf

e Denote this pushforward onto SO(3) as BH(M)

e BH(M) = BH(M + A1), so we may assume the eigenvalues of M
areOZ)qZ)\QZ)\g
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Bingham Distribution (2)

° f(q) = x(m exp (¢" Mq)
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Bingham Distribution (2)

° f(q) = g exp (¢ Ma)

0 0 0 O
0 X 0 O
_ pT 1
e M =P 0 0 A 0 P, for some P € O(4)
0 0 0 X3
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Bingham Distribution (2)

° f(q) = g exp (¢ Ma)

0 0 0 O
0 X 0 O
T 1
e M =P 0 0 A 0 P, for some P € O(4)
0 0 0 X3
@ There exists qo := (s0,v0) € SU(2) C R'*3 and Q € O(3) such

that

N T T |
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Bingham Distribution (2)

° f(q) = g exp (¢ Ma)

0 0 0 O
0 X 0 O
_ pT 1
e M =P 0 0 A 0 P, for some P € O(4)
0 0 0 X3
@ There exists qo := (s0,v0) € SU(2) C R'*3 and Q € O(3) such

that
oy o[ 1 ol
0 Q qu 0 Q —V0 501—[1)0]><

© Hence, f(q) = ge(ary oxp <(%_ICI)T [8 _%02_1] (QO_IQ)>
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Bingham Distribution (3)

° f(a) = w(ary exp ((qo_lfJ)T [8 _%02_1] (q(J_l(J))
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Bingham Distribution (3)

° f(a) = (apy exp <(QO_1Q)T [8 ;)2_1] (QO_IQ)>

@ 7(qo): unique center, at which f is maximized
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Bingham Distribution (3)

° f(9) = wiary exp ((qo_l@T [8 102 ] (a _IQ)>

@ 7(qo): unique center, at which f is maximized

__1 0 0
2X1
o X=Q"| 0 —ﬁ O1 Q is positive-definite
0 0 o
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Bingham Distribution (3)

° f(9) = wiary exp ((qo_ch)T [8 102 ] (a _IQ)>

@ 7(qo): unique center, at which f is maximized

1
— 0 0
o X=Q"| 0 —2§\2 01 Q is positive-definite
0 0 —5x

@ (: principal directions
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Bingham Distribution (3)

_ 0 0 .
o 1) = whme (@' ) %] @)
K(M) 0 0 4,553 1 0
@ 7(qo): unique center, at which f is maximized
1
— o 0 0
=7 | 0 —ﬁ 0 | Q is positive-definite
0 0 —5:

Q): principal directions

Eigenvalues: how rapidly spreads along each principal direction
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Bingham Distribution (3)

° f(a) = (apy exp ((qach)T [8 ;2_1] (qalfJ))

@ 7(qo): unique center, at which f is maximized

1
— o 0 0
o X=Q"| 0 —ﬁ 0 | Q is positive-definite
0 0 _ 1
2)3
@ (: principal directions

Eigenvalues: how rapidly spreads along each principal direction

K(M) = fSU(z) exp (¢"'Mq) dq depends only on eigenvalues
Claim 2 LD(7(qp), %) ~ BH(M)
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Bingham Distribution (3)

° f(a) = (apy exp ((qach)T [8 ;2_1] (qalfJ)>

@ m(qo): unique center, at which f is maximized

1
— o 0 0
o X=Q"| 0 —ﬁ 0 | Q is positive-definite
0 0 _ 1
2)3
@ (: principal directions

Eigenvalues: how rapidly spreads along each principal direction

K(M) = fSU(z) exp (¢"'Mq) dq depends only on eigenvalues
Claim 2 LD(7(qp), %) ~ BH(M)

o Numerically verified for some isotropic cases [1]
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Direction Measurement (1)

e Let R ~BH(M), V = Rh+ U for some h € R? and
U ~ N(0,0%1)
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Direction Measurement (1)
e Let R ~BH(M), V = Rh+ U for some h € R? and
U ~ N(0,0%1)
@ What is the conditional distribution R|V?
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Direction Measurement (1)
e Let R ~BH(M), V = Rh+ U for some h € R? and
U ~ N(0,0%1)
@ What is the conditional distribution R|V?

o Bayes' rule: fry(r|v) = %W
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Direction Measurement (1)

e Let R ~BH(M), V = Rh+ U for some h € R? and
U ~ N(0,0%1)
@ What is the conditional distribution R|V?

o Bayes' rule: fry(r|v) = %W

o (VIR=r)~N(rh,X%), so fy(rlv) o
exp < l[o=ara~*]|” qhq ] ) exp (¢ Mq) = exp (¢" (M + M) q) where

1 _ T
My = [ v — h? 2(v x h)

202 [2(v x )T v+ h|*1 = 2(vhT + hoT)
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Direction Measurement (2)

@ In general, for V; = Rh; + U;, i =1, --- ,n, define

e L (o= hil | 2(v; % h;)"
e 20’1-2 2(’Ui X hi)T H’UZ -+ hZHQ 1-— Q(UihZT + hZ”UZT) ’
then
(RH/]. =V, - ’Vn :'Un) ~ BH <M+ZMZ>
=1
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Update Using Accelerometer and Magnetometer

@ System model:

o A, = Rra+V
o My = Rym—+ Wy
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@ System model:
o Ay, = Rra+ Vg
o My = Rym+ Wy
@ Update procedure:
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o My =Rym+ W,
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© Approximate the distribution of R;|G; as BH(M)
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Update Using Accelerometer and Magnetometer

@ System model:
o A, = Rpa—+V,
] Mk = ka + Wk
@ Update procedure:
© Approximate the distribution of R;|G; as BH(M)
@ Calculate My, M, for Ay, My

© Then the distribution of R1|G1, A1, M7 is approximately
BH(M + M; + M)
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Update Using Accelerometer and Magnetometer

@ System model:
o Ay, = Rra+ Vg
o My = Rym+ Wy
@ Update procedure:
© Approximate the distribution of R;|G; as BH(M)
@ Calculate My, M, for Ay, My
© Then the distribution of R1|G1, A1, M7 is approximately
BH(M + M; + M)
©Q Approximate BH(M + M; + M) as LD(r, %)

40 /52



Kalman Filter At ude Tracklng

Algorithm Summary (1)

Input: initial distribution, noise variances, constant vectors a, m
Output: 7
Initialize 7 <+ 7o, X + Xg, w0 < Wy, 052) — 0'52—2,0
For each time instance,
© Get measurements (g, a, m)
@ Update using g:

2 2 A2\ 2
 oxp <_[ (o + 03 At?)w n 049 2} At)r
X

=

o 4+ 04 A + 03 oF + oA + 0}
(0% + 04 At?) o At?
of + o4 A + o,
. oHw (03 A +03)g
0% + o4 A + o} UU+UAAt2+UQ
9 JU(UAAt2 + O'Q)
ot + o4 AL + o

Y2+
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Kalman Filter

Algorithm Summary (1)

@ Input: initial distribution, noise variances, constant vectors a, m
o Output: 7
@ For each time instance,

© Update using a,m:

T
_la=al®> _ [m-m]|? axa | mxm
oy 20'5‘, %,
ol T
o Let M = a7 tea” 4 mm n” L
axa 4 m>2<m T
2 ata m+m
o T o (H QH 4 m+m]? )1
o

e Find gy € SU(2) with 7(q ) 13

0
o Let My :=Qr(q) [0 } Qrlg”
o Find (7, %) such that LD(r 2) BH(M1 + M)
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Discussions

@ Why (a,m) are used only for updating R but not Q7

Incorrect independence assumption Ry |

o Consideration of gyroscope bias and accel./magnet. disturbance

Do claims really hold?

e Extension to SE(3)?
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Derivation of Kalman Filter (1)

@ System model:
o Xy =FXp 1+ Wy
o Vi =HX,; + Uy

e To compute: E[X|Y1, -+ , V%]
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Derivation of Kalman Filter (1)

@ System model:
o Xy =FXp 1+ Wy
o Vi =HX,; + Uy

e To compute: E[X|Y1, -+ , V%]

@ Denote X'k|k = E[X3|Y}]
@ Define the innovation sequence

Ve = Y- EY[Y{
= Y, — HE[X,|Y} ™Y

@ From Gaussian assumption, one can show that Ylkf1 1Y
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Derivation of Kalman Filter (2)
@ System model:

o Xy =FX,_ 1+ W,
] Yk:HXk+Uk

e To compute: E[X|Y1, -+, Y%]

@ Denote Xk|k—1 = E[X,|Y}"!] so that Y}, = Y}, — HXk|k_1
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Derivation of Kalman Filter (2)

System model:
o Xi =FXi 1+ Wi
] Yk == HXk + Uk

e To compute: E[X|Y1, -+, Y%]

Denote Xy := E[X4|Y}" ] so that Y}, = Y, — HXpp

@ One can show that if (XY, Z) are jointly Gaussian and X 1 Y
then
E[Z]X,Y] = E[Z|X] + E[Z]Y] - E[Z],

SO
Xipe = BIX4|YF] = Xyt + B[Xk| V3]
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Derivation of Kalman Filter (3)
@ System model:

o Xy =FX,_ 1+ W,
o V. = HX; + U,

e To compute: E[X|Y1, -+, Y%]

° Xk‘k_l = E[X4|Y}™ Y] = FE[X; 1|7 = FX, 1
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Appendix
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Derivation of Kalman Filter (3)

System model:
o Xi =FXi 1+ Wi
] Yk == HXk + Uk,

e To compute: E[X|Y1, -+, Y%]

Xppo1 = EX4 Y1) = FEX 1 [V} = FX, 1y
Need to know E[X}|Y;]

According to a well-known formula for jointly Gaussian r.v.s:

E[X.|Yi] = E[X .Y E[Y. Y]~ 1Ys
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Derivation of Kalman Filter (4)

System model:
o Xi =FXi 1+ Wi
] Yk == HXk + Uk,

e To compute: E[X|Y1, -+, Y%]

Vi =Yy, — B[V V'] = H(X), — Xppp—1) + U, s0
E[Y;Y,l] = HPyj_H" + R, where
o Pyp—1 = EBE[(Xx — Xk|k—1)(Xk - Xk\k—l)T}
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Derivation of Kalman Filter (4)

System model:
o Xi =FXi 1+ Wi
] Yk == HXk + Uk,

e To compute: E[X|Y1, -+, Y%]

Vi =Yy, — B[V V'] = H(X), — Xppp—1) + U, s0
E[Y;Y,l] = HPyj_H" + R, where

o Pyp—1 = BE[(Xy — Xypp_1)(Xp — Xk\k—l)T}
e This is the prediction uncertainty

@ Again from independence, E[Xk}}kT] = Pk‘k_lHT
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Derivation of Kalman Filter (5)

@ System model:
o Xy =FX,_ 1+ W,
] Yk == HXk + Uk,

e To compute: E[X|Y7, --- ,Y}]

@ Hence, 3 ~
E[X|Yi] = K Yy

where
o Kk = Pk|k,1HT(HPk|k,1HT + R)_1
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e To compute: E[X|Y1, -+, Y%]

@ Hence, . B
E[X|Yi] = K Yy

where
o Kk = Pk|k,1HT(HPk|k,1HT + R)_1
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Appendix
0000e00

Derivation of Kalman Filter (5)

System model:
o Xi =FXi 1+ Wi
] Yk == HXk + Uk

e To compute: E[X|Y1, -+, Y%]

@ Hence, . B
E[X|Yi] = K Yy
where

o Kk = Pk|k,1HT(HPk|k,1HT + R)_1
e This is called the Kalman gain

We are to find the prediction uncertainty
Ppjr—1 = E[(Xg — Xgpp—1)( Xk — Xk“g,l)T] from now on
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Appendix
Derivation of Kalman Filter (6)
@ System model:
o Xy =FXp_ 1+ Wy

o Vi =HX; + U
e To compute: E[X}|Y1, -+ ,Y%]

o Xj — Xyt = F(Xp—1 — Xp_1jp—1) + Wi, so
Pyp—1 = FPy_1p 1 FT+Q

where X
o Pyt = B[(Xpo1 — Xpo1jp—1) (X1 — Xpm1jp—1)7]
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Derivation of Kalman Filter (6)
@ System model:
o Xy =FXp_ 1+ Wy

o Vi =HX; + U
e To compute: E[X}|Y1, -+ ,Y%]

o Xj — Xyt = F(Xp—1 — Xp_1jp—1) + Wi, so
Pyp—1 = FPy_1p 1 FT+Q
where

o Prijpor = E[(Xpo1 — Xp—1pp—1) (KXot — Xpm1je-1) 7]
e This is the estimation uncertainty
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Derivation of Kalman Filter (6)

System model:
o Xy =FXp_1+W;
o V., =HX;+ U
e To compute: E[X}|Y1, -+ ,Y%]

X — Xpjpo1 = F(Xp—1 — Xy_1j5—1) + Wi, s0
Pyp—1 = FPy_1p 1 FT+Q

where X
o Pyt = B[(Xpo1 — Xpo1jp—1) (X1 — Xpm1jp—1)7]
e This is the estimation uncertainty
From Xj, = Xpp—1 + E[Xy|Y%], one can derive the formula

Py = (1= KpH)Pyp—y
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Derivation of Kalman Filter (7)
@ System model:
o Xy =FXi 1+ W,
o Vi =HX; + Uy
e To compute: E[X|Y1, -+ , V%]

@ In summary, the overall procedure is done in two phases:
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Derivation of Kalman Filter (7)

@ System model:
o Xi, =FXp_1+ W,
o Vi =HX; + Uy
e To compute: E[X|Y1, -+ , V%]

@ In summary, the overall procedure is done in two phases:
© Prediction phase: compute Xy ;,_1, Pyjr—1 from X151,
Py_1)x—1 using the formulas
o Xypo1= FXk—l\k—l
@ Pyp—1= FPk—1|k—1FT +Q
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Appendix
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Derivation of Kalman Filter (7)

@ System model:
o Xi, =FXp_1+ W,
o Vi =HX; + Uy
e To compute: E[X|Y1, -+ , V%]

@ In summary, the overall procedure is done in two phases:
© Prediction phase: compute Xk‘k_l, Pyjr—1 from Xk—1|k—1x
Py_1)x—1 using the formulas
o Xppo1= FXk—l\k—l
@ Pyp—1= FPk—1|k—1FT +Q
© Update phase: compute X’k‘k, Py, from Xk‘k_l, Pyj—1, and Y3
using the formulas
o Kj *Pk\k HT (H Pyji— HT +R)_
o Xijp = Xpppo1 + Kie(Ye — HXpp-1)
o Py = (1— KxH)Pyji
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