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Kalman Filter Attitude Tracking

Section 1

Kalman Filter

Figure 1: Rudolf Emil Kálmán (May 19, 1930 - July 2, 2016)
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Kalman Filter Attitude Tracking

Goal

Tracking problem
Find the state of a dynamical system, given the history of
observations of the system

Filtering: find the present state
Smoothing: find past states
Prediction: find future states

Control problem
Try to make a dynamical system into a desired state by applying
certain actions, given the history of observations of the system

States, observations, and actions are in some multi-dimensional
continua
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Kalman Filter Attitude Tracking

Example of System Model

𝑋𝑘𝑋𝑘−1

𝐵𝑘−1

𝑓(𝑋𝑘−1, 𝐵𝑘−1)

𝑌𝑘

ℎ(𝑋𝑘)

𝑌𝑘−1

ℎ(𝑋𝑘−1)
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𝑌𝑘+1

ℎ(𝑋𝑘+1)

𝐵𝑘

𝑓(𝑋𝑘 , 𝐵𝑘)

Figure 2: Discrete-Time Control System

Xk: system’s state at the kth time instance
Bk: controller’s action at the kth time instance
Yk: observation of the system at the kth time instance
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Kalman Filter Attitude Tracking

Approaches

Deterministic approaches
“Solve” the equations
Minimize corresponding “cost function”

Probabilistic approaches
Parametric vs. Non-parametric

Parametric: assumes certain “form” of probability measures
Non-parametric: try to find the probability measure itself

Bayesian vs. Non-Bayesian
Bayesian: parameter itself is a random variable
Non-Bayesian: parametr is a fixed unknown constant

Kalman’s approach: parametric Bayesian
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Kalman Filter Attitude Tracking

Kalman Filter (1)

Goal: estimate the state of a system given by a time-series
(Xk)

∞
k=0, from observations (Yk)

∞
k=0

Assumptions:
The system evolves linearly: Xk = FXk−1 +Wk

F : a known, fixed linear transformation
Wk: process noise, driving the system randomly

The observation is derived linearly from the state: Yk = HXk +Uk
H: a known, fixed linear transformation
Uk: measurement noise, making the observation imprecise

Further assumptions:
X0, Wk’s, Uk’s are all independent and all zero-mean Gaussian
Wk’s are identically distributed w/ covariance Q
Uk’s are identically distributed w/ covariance R
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Kalman Filter Attitude Tracking

Example - Speed Camera

Want to know: the speed of the car
Observed: the position of the car

Xk =

[
Pk
Vk

]
Pk: position at t = k∆t
Vk: average velocity between t = k∆t and t = (k + 1)∆t[

Pk
Vk

]
=

[
1 ∆t
0 1

] [
Pk−1

Vk−1

]
+

[
0

Ak∆t

]
Ak: random acceleration of the car

Yk =
[
1 0

] [Pk
Vk

]
+ Uk

Uk: sensor noise
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Kalman Filter Attitude Tracking

Kalman Filter (2)

What is the “best” estimate of Xk given Y1, · · · , Yk?
Since we are doing Bayesian estimate, average cost is the concern

Theorem 1
Given L2-r.v. X and a r.v. Y , a conditional expectation of X given Y
is an MMSE (Minimum Mean-Square Error) estimate of X given Y ;
that is, for any measurable function f : Y → X ,

E
[
‖X − E[X|Y ]‖2

]
≤ E

[
‖X − f(Y )‖2

]
Suffices to find E[Xk|Y1, · · · , Yk]
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Kalman Filter Attitude Tracking

Kalman Filter (3)

If (X1, X2) ∼ N

([
µ1

µ2

] [
Σ11 Σ12

Σ21 Σ22

])
, then

(X1|X2 = x2) ∼ N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
What’s the matter?

Intractable to directly calculate E[Xk|Y1, · · · , Yk]

Infinite (indefinitely growing) memory requirement
Joint distribution of (Xk, Y1, · · · , Yk) is too complicated

Have to “summarize” the results before taking Yk into account
It turns out, X̂k−1|k−1 := E[Xk−1|Y1, · · · , Yk−1] and
Pk−1|k−1 := E[(Xk−1 − X̂k−1|k−1)(Xk−1 − X̂k−1|k−1)T ] are
sufficient summaries
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Kalman Filter Attitude Tracking

Kalman Filter (4)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

1 Prediction phase: compute X̂k|k−1, Pk|k−1 from X̂k−1|k−1,
Pk−1|k−1 using the formulas

X̂k|k−1 = FX̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T +Q

2 Update phase: compute X̂k|k, Pk|k from X̂k|k−1, Pk|k−1, and Yk
using the formulas

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1

X̂k|k = X̂k|k−1 +Kk(Yk −HX̂k|k−1)
Pk|k = (I−KkH)Pk|k−1

10 / 52
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Kalman Filter Attitude Tracking

Good Things and Bad Things

Good things
Computationally cheap; several matrix multiplications and an
inversion
Small memory requirement; only necessary to remember X̂k|k and
Pk|k
Optimal w.r.t. MSE

Bad things
Too limited applications

Without further assumptions: lose optimality
Linear system? Extremely rare...
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Kalman Filter Attitude Tracking

How to Go Beyond? (1)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk
Filtering process:

1 Prediction phase:
X̂k|k−1 = FX̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T + Q

2 Update phase:
Kk = Pk|k−1H

T (HPk|k−1H
T + R)−1

X̂k|k = X̂k|k−1 + Kk(Yk −HX̂k|k−1)
Pk|k = (I −KkH)Pk|k−1

Observation: no difference when F,H can vary over time, if we
know them exactly
Replace F to DfX̂k−1|k−1

, H to DhX̂k|k−1

⇒ Extended Kalman Filter (EKF)
12 / 52
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Kalman Filter Attitude Tracking

How to Go Beyond? (2)

Problems of EKF
VERY sensitive when X̂ approaches to singularities
Calculation of the Jacobian matrices could be extremely
complicated
Cannot force constraints

There are other alternatives:
Unscented Kalman Filter (UKF)
Particle Filter
Moving Horizon Filter
Etc...
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Kalman Filter Attitude Tracking

Section 2

Attitude Tracking

Figure 3: Olinde Rodrigues (October 6, 1795 - December 17, 1851)
14 / 52



Kalman Filter Attitude Tracking

Problem Definition (1)

What “attitude” means?
The coordinates of three frame vectors with respect to the global
coordinate system

𝑥 𝑦 

𝑧 

𝑒𝑟 
𝑒𝑝 

𝑒𝑦 

Figure 4: Frame vectors
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Kalman Filter Attitude Tracking

Problem Definition (2)

What “attitude” means?
(Frame vectors) = (Rotation matrix)
r :=

[
er ep ey

]T
(Rotation matrix) = (Orthogonal matrix w/ det.=1)

The set of orthogonal matrices w/ det.=1 is called the special
orthogonal group and denoted as SO(3)
In summary, we are to find an element in SO(3)

𝑥 𝑦 

𝑧 

𝑒𝑟 
𝑒𝑝 

𝑒𝑦 

16 / 52



Kalman Filter Attitude Tracking

Problem Definition (3)

What we have?
Inertial Measurement Unit (IMU): combination of the following
three sensors:

Gyroscope: measures angular velocity
Accelerometer: measures acceleration
Magnetometer: measures magnetic field

Accelerometer measures the gravity
Magnetometr measures the heading; think of compass

Figure 5: The output of gyroscope sensors
17 / 52
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Kalman Filter Attitude Tracking

Problem Definition (4)

Gyroscope measures change of frame vectors with respect to the
local frame vectors

re′1 ≈

1
0
0

 + ω3∆t

0
1
0

− ω2∆t

0
0
1


re′2 ≈

0
1
0

 + ω1∆t

0
0
1

− ω3∆t

1
0
0


re′3 ≈

0
0
1

 + ω2∆t

1
0
0

− ω1∆t

0
1
0



𝑒3

𝑒1 𝑒2

𝑒3
′

𝑒1
′ 𝑒2

′

𝑟 =

𝑒1
𝑇

𝑒2
𝑇

𝑒3
𝑇
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Kalman Filter Attitude Tracking

Problem Definition (5)

Gyroscope measures change of frame vectors with respect to the
local frame vectors

r
[
e′1 e′2 e′3

]
≈ I +

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∆t

≈ exp ([ω]×∆t)

𝑒3

𝑒1 𝑒2

𝑒3
′

𝑒1
′ 𝑒2

′

𝑟 =

𝑒1
𝑇

𝑒2
𝑇

𝑒3
𝑇

Hence, r(r′)T ≈ exp ([ω]×∆t), r′ ≈ exp (−[ω]×∆t) r
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Kalman Filter Attitude Tracking

Problem Definition (6)

Evolution equations:
Attitude Rk = exp(−[Ωk−1]×∆t)Rk−1

Angular velocity Ωk = Ωk−1 +Ak∆t

where Ak is a random process noise

Measurement equations:
Gyroscope Gk = Ωk + Uk

Accelerometer Ak = Rka + Vk
Magnetometer Mk = Rkm +Wk

where Uk, Vk,Wk are random measurement noises, a the constant
gravity vector, and m the constant Earth magnetic field vector

Valid only when
There is no rapid movement
There is no magnetic disturbance
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Kalman Filter Attitude Tracking

Problem Definition (7)

System model:
Rk = exp(−[Ωk−1]×∆t)Rk−1

Ωk = Ωk−1 +Ak∆t
Gk = Ωk + Uk
Ak = Rka + Vk
Mk = Rkm +Wk

Goal: find Rk given Y k
1 , where Yk := (Gk, Ak,Mk)

We may assume Ak, Uk, Vk,Wk are all independent isotropic i.i.d.
Gaussian process
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Kalman Filter Attitude Tracking

State Variables Are Not in Rn

There is no “conditional expectation”
But we can find MMSE estimator if we know the conditional
distribution

There is no “Gaussian distribution”
Why Gaussian distribution is so nice?

Very stable under various kinds of transformations
• Affine transforms
• Conditioning
• Etc.

Parametrized
Physically meaningful

• Central limit theorem
• Brownian motion, heat kernel, diffusion kernel, or related
• Maximum entropy under energy constraint
• Etc.
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Kalman Filter Attitude Tracking

Drift-Diffusion Equation (1)

What is the most natural generalization of Gaussian measures on Lie
groups?

Theorem 2 (Drift-Diffusion Equation)
The solution f : [0,∞)× Rn → C to the differential equation{

∂f(t,x)
∂t =

∑n
i,j=1 aij

∂2f(x,t)
∂xi∂xj

−
∑n
i=1 bi

∂f(x,t)
∂xi

f(0, x) = f0(x), f0 : Rn → C

where A := [aij ] is positive-semidefinite is given as

f(t, x) =

∫
f0(x− y) dµt(y) = (f0 ∗ µt)(x)

where µt is the measure given by its Fourier-Stieltjes transform
µ̂t(ξ) = exp

(
−2πit 〈ξ, b〉 − 2π2t 〈ξ, Aξ〉

)
.
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Kalman Filter Attitude Tracking

Drift-Diffusion Equation (2)

Gaussian measures on Rn can be characterized as
Kernels of drift-diffusion equations, or
Measures whose Fourier transforms are of the form

µ̂(ξ) = exp
(
−2πi 〈ξ, b〉 − 2π2 〈ξ, Aξ〉

)

Equivalence of the above two characterization is not a coincidence
Turns out, the same is true for general Lie groups!
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Kalman Filter Attitude Tracking

Some Backgrounds (1)

Definition 3 (Unitary representation)
A unitary representation of a locally compact Hausdorff group G is a
continuous group homomorphism ξ : G → U(E) into the unitary
group of a Hilbert space E endowed with the strong operator topology.

Definition 4 (Fourier-Stieltjes transform)
For µ ∈M(G) and a unitary representation ξ of G, the
Fourier-Stieltjes transform of µ at ξ is defined as

µ̂(ξ) :=

∫
ξ(x−1) dµ(x)

25 / 52



Kalman Filter Attitude Tracking

Some Backgrounds (2)

Definition 5 (Convolution)
For µ, ν ∈M(G), the convolution of µ and ν is defined as

µ ∗ ν : A 7→
∫ ∫

1A(xy) dµ(x) dν(y).

In particular, according to the embedding L1(G) → M(G) with respect to
the right Haar measure,

f ∗ µ : x 7→
∫
f(xy−1) dµ(y)

Proposition 6
For µ, ν ∈M(G) and a unitary representation ξ of G,

µ̂ ∗ ν(ξ) = ν̂(ξ)µ̂(ξ).
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Kalman Filter Attitude Tracking

Some Backgrounds (3)

Theorem 7 (Gelfand-Raikov)
A measure µ ∈M(G) is uniquely determined by values of its
Fourier-Stieltjes transform at irreducible unitary representations; that is,
if µ̂(ξ) = 0 for all irreducible unitary representation ξ of G, then µ = 0.

However, in general, computing µ from µ̂(ξ)’s is very hard, even
when we know the complete list of irreducible unitary
representations
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Kalman Filter Attitude Tracking

Drift-Diffusion Equation (3)

Theorem 8
Let G be a Lie group and D be a left-invariant differential operator on G
given as D = −m+ 1

2Σ, where m ∈ g and Σ ∈ U(g) is a degree 2 symmetric
positive-semidefinite element. Then the unique solution to the differential
equation {

∂f(t,x)
∂t = Df(t, x)

f(0, x) = f0(x), f0 : G → C

is given as

f(t, x) =

∫
f0(xy−1) dµt(y) = (f0 ∗ µt)(x),

where µt is the unique measure such that µ̂t : ξ 7→ exp(tξ∗D).
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Kalman Filter Attitude Tracking

Drift-Diffusion Equation (4)

The theorem says:
For any ξ, exp(tξ∗D) is a well-defined bounded operator on the
Hilber space on which ξ is defined
There uniquely exists a probability measure µt ∈M(G) having
ξ 7→ exp(tξ∗D) as its Fourier-Stieltjes transform
(µt)t≥0 is the kernel of the left-invariant drift-diffusion equation

Definition 9 (Drift-diffusion measure)
The drift-diffusion measure associated to D is the measure µ1, which is
the unique measure satisfying µ̂1 : ξ 7→ exp(ξ∗D).
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Kalman Filter Attitude Tracking

Left-Translated Diffusion Distribution on SO(3) (1)

Let’s focus on the case G = SO(3)

Let us call a measure µ ∈M(G) a left-translated diffusion
distribution if µ̂(ξ) = exp

(
1
2ξ∗Σ

)
ξ(x−1

0 ), and denote
µ = LD(x0,Σ)

Σ, a symmetric positive-definite degree 2 element in U(so(3)) will
play the role of covariance matrix
x0 ∈ G will play the role of mean

The case when Σ = σ21, that is, when it is a Casimir element,
We call µ central or isotropic
For ν = LD(y0,Σ), µ ∗ ν = LD(x0y0,Σ + σ21)
In general, convolution of non-isotropic LD’s need not an LD
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Kalman Filter Attitude Tracking

Left-Translated Diffusion Distribution on SO(3) (2)

A kind of central limit theorem hold [2][1]
For isotropic distributions, the pdf can be calculuated numerically
as

f(t) =

∞∑
l=0

(2l + 1)e−
l(l+1)

2
σ2

(
sin
(
l + 1

2

)
t

sin t
2

)
where t is the distance from the center
Is x0 the MSE estimate when the distribution is LD(x0,Σ)?
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Kalman Filter Attitude Tracking

Update Using Gyroscope (1)

System model:
Rk = exp(−[Ωk−1]×∆t)Rk−1

Ωk = Ωk−1 +Ak∆t
Gk = Ωk + Uk

Assume
R0 ⊥ Ω0

R0 ∼ LD(r̄0,Σ0)
Ω0 ∼ N(ω̄0, σ

2
Ω,01)

(Ω1|G1 = g1) ∼ N
(
ω̄1, σ

2
Ω,11

)
where

ω̄1 :=
σ2
U ω̄0

σ2
U + σ2

A∆t2 + σ2
Ω,0

+

(
σ2
A∆t2 + σ2

Ω,0

)
g1

σ2
U + σ2

A∆t2 + σ2
Ω,0

σ2
Ω,1 :=

σ2
U

(
σ2
A∆t2 + σ2

Ω,0

)
σ2
U + σ2

A∆t2 + σ2
Ω,0

32 / 52



Kalman Filter Attitude Tracking

Update Using Gyroscope (1)

System model:
Rk = exp(−[Ωk−1]×∆t)Rk−1

Ωk = Ωk−1 +Ak∆t
Gk = Ωk + Uk

Assume
R0 ⊥ Ω0

R0 ∼ LD(r̄0,Σ0)
Ω0 ∼ N(ω̄0, σ

2
Ω,01)

(Ω1|G1 = g1) ∼ N
(
ω̄1, σ

2
Ω,11

)
where

ω̄1 :=
σ2
U ω̄0

σ2
U + σ2

A∆t2 + σ2
Ω,0

+

(
σ2
A∆t2 + σ2

Ω,0

)
g1

σ2
U + σ2

A∆t2 + σ2
Ω,0

σ2
Ω,1 :=

σ2
U

(
σ2
A∆t2 + σ2

Ω,0

)
σ2
U + σ2

A∆t2 + σ2
Ω,0

32 / 52



Kalman Filter Attitude Tracking

Update Using Gyroscope (1)

System model:
Rk = exp(−[Ωk−1]×∆t)Rk−1

Ωk = Ωk−1 +Ak∆t
Gk = Ωk + Uk

Assume
R0 ⊥ Ω0

R0 ∼ LD(r̄0,Σ0)
Ω0 ∼ N(ω̄0, σ

2
Ω,01)

(Ω1|G1 = g1) ∼ N
(
ω̄1, σ

2
Ω,11

)
where

ω̄1 :=
σ2
U ω̄0

σ2
U + σ2

A∆t2 + σ2
Ω,0

+

(
σ2
A∆t2 + σ2

Ω,0

)
g1

σ2
U + σ2

A∆t2 + σ2
Ω,0

σ2
Ω,1 :=

σ2
U

(
σ2
A∆t2 + σ2

Ω,0

)
σ2
U + σ2

A∆t2 + σ2
Ω,0

32 / 52



Kalman Filter Attitude Tracking

Update Using Gyroscope (2)

System model:
Rk = exp(−[Ωk−1]×∆t)Rk−1

Ωk = Ωk−1 +Ak∆t
Gk = Ωk + Uk

Similarly, (Ω0|G1 = g1) ∼ N
(
ω̃0, σ̃

2
Ω,01

)
where

ω̃0 :=

(
σ2
A∆t2 + σ2

U

)
ω̄0

σ2
U + σ2

A∆t2 + σ2
Ω,0

+
σ2

Ω,0g1

σ2
U + σ2

A∆t2 + σ2
Ω,0

σ̃2
Ω,0 :=

(
σ2
A∆t2 + σ2

U

)
σ2

Ω,0

σ2
U + σ2

A∆t2 + σ2
Ω,0
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Kalman Filter Attitude Tracking

Update Using Gyroscope (3)

System model:
Rk = exp(−[Ωk−1]×∆t)Rk−1

Ωk = Ωk−1 +Ak∆t
Gk = Ωk + Uk

Since G1 − Ω0 −R0 is a Markov chain and R0 ⊥ Ω0,

(dist. R1|G1) = (dist. exp(−[Ω0]×∆t)|G1) ∗ (dist. R0)

Claim 1 if ω̄, σ2 are small enough,

exp∗N
(
ω̄, σ21

)
≈ LD

(
exp ([ω̄]×) , σ21

)
Hence, if ∆t is small enough,

(R1|G1 = g1) ∼LD
(
exp (−[ω̃0]×∆t) , σ̃2

Ω,01
)
∗ LD (r̄0,Σ0)

=LD
(
exp (−[ω̃0]×∆t) r̄0, σ̃

2
Ω,01 + Σ0

)
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Kalman Filter Attitude Tracking

Bingham Distribution (1)

Definition 10 (Bingham distribution)
For a symmetric 4× 4 real matrix M , the Bingham distribution
associated to M is the probability measure on SU(2) ⊆ R4 whose pdf
is of the form

f(q) =
1

K(M)
exp

(
qTMq

)
.

f(q) = f(−q), thus the pushforward of this measure by the
covering map π : SU(2) → SO(3) doubles the pdf

Denote this pushforward onto SO(3) as BH(M)

BH(M) = BH(M + λ1), so we may assume the eigenvalues of M
are 0 ≥ λ1 ≥ λ2 ≥ λ3
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Kalman Filter Attitude Tracking

Bingham Distribution (2)

f(q) = 1
K(M) exp

(
qTMq

)
M = P T


0 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

P , for some P ∈ O(4)

There exists q0 := (s0, v0) ∈ SU(2) ⊆ R1+3 and Q ∈ O(3) such
that

P =

[
1 0
0 Q

]
QL(q−1

0 ) =

[
1 0
0 Q

] [
s0 vT0
−v0 s01− [v0]×

]

Hence, f(q) = 1
K(M) exp

(
(q−1

0 q)T
[
0 0
0 −1

2Σ−1

]
(q−1

0 q)

)
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Kalman Filter Attitude Tracking

Bingham Distribution (3)

f(q) = 1
K(M) exp

(
(q−1

0 q)T
[
0 0
0 −1

2Σ−1

]
(q−1

0 q)

)
π(q0): unique center, at which f is maximized

Σ = QT

− 1
2λ1

0 0

0 − 1
2λ2

0

0 0 − 1
2λ3

Q is positive-definite

Q: principal directions
Eigenvalues: how rapidly spreads along each principal direction
K(M) :=

∫
SU(2) exp

(
qTMq

)
dq depends only on eigenvalues

Claim 2 LD(π(q0),Σ) ≈ BH(M)

Numerically verified for some isotropic cases [1]
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Kalman Filter Attitude Tracking

Direction Measurement (1)

Let R ∼ BH(M), V = Rh+ U for some h ∈ R3 and
U ∼ N(0, σ21)

What is the conditional distribution R|V ?

Bayes’ rule: fR|V (r|v) =
fV |R(v|r)fR(r)

fV (v)

(V |R = r) ∼ N (rh,Σ), so fR|V (r|v) ∝

exp

(
−‖v−qhq

−1‖2
2σ2

)
exp

(
qTMq

)
= exp

(
qT (M +M1) q

)
where

M1 := − 1

2σ2

[
‖v − h‖2 2(v × h)T

2(v × h)T ‖v + h‖2 1− 2(vhT + hvT )

]
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Let R ∼ BH(M), V = Rh+ U for some h ∈ R3 and
U ∼ N(0, σ21)

What is the conditional distribution R|V ?

Bayes’ rule: fR|V (r|v) =
fV |R(v|r)fR(r)

fV (v)

(V |R = r) ∼ N (rh,Σ), so fR|V (r|v) ∝

exp

(
−‖v−qhq

−1‖2
2σ2

)
exp

(
qTMq

)
= exp

(
qT (M +M1) q

)
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Kalman Filter Attitude Tracking

Direction Measurement (2)

In general, for Vi = Rhi + Ui, i = 1, · · · , n, define

Mi := − 1

2σ2
i

[
‖vi − hi‖2 2(vi × hi)T
2(vi × hi)T ‖vi + hi‖2 1− 2(vih

T
i + hiv

T
i )

]
,

then

(R|V1 = v1, · · · , Vn = vn) ∼ BH

(
M +

n∑
i=1

Mi

)
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Kalman Filter Attitude Tracking

Update Using Accelerometer and Magnetometer

System model:
Ak = Rka + Vk
Mk = Rkm +Wk

Update procedure:
1 Approximate the distribution of R1|G1 as BH(M)
2 Calculate M1, M2 for A1, M1

3 Then the distribution of R1|G1, A1,M1 is approximately
BH(M +M1 +M2)

4 Approximate BH(M +M1 +M2) as LD(r,Σ)
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Kalman Filter Attitude Tracking

Algorithm Summary (1)

Input: initial distribution, noise variances, constant vectors a,m
Output: r̄
Initialize r̄ ← r̄0, Σ← Σ0, ω̄ ← ω̄0, σ2

Ω ← σ2
Ω,0

For each time instance,
1 Get measurements (g, a,m)
2 Update using g:

r̄ ← exp

(
−
[

(σ2
U + σ2

A∆t2)ω̄

σ2
U + σ2

A∆t2 + σ2
Ω

+
σ2

Ωg

σ2
U + σ2

A∆t2 + σ2
Ω

]
×

∆t

)
r̄

Σ←Σ +
(σ2
U + σ2

A∆t2)σ2
Ω∆t2

σ2
U + σ2

A∆t2 + σ2
Ω

1

ω̄ ← σ2
U ω̄

σ2
U + σ2

A∆t2 + σ2
Ω

+
(σ2
A∆t2 + σ2

Ω)g

σ2
U + σ2

A∆t2 + σ2
Ω

σ2
Ω ←

σ2
U (σ2

A∆t2 + σ2
Ω)

σ2
U + σ2

A∆t2 + σ2
Ω
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Kalman Filter Attitude Tracking

Algorithm Summary (1)

Input: initial distribution, noise variances, constant vectors a,m
Output: r̄
For each time instance,

3 Update using a,m:

• Let M1 :=


−‖a−a‖

2

2σ2
V
− ‖m−m‖

2

2σ2
W

(
a×a
σ2
V

+ m×m
σ2
W

)T
a×a
σ2
V

+ m×m
σ2
W

aaT +aaT

σ2
V

+ mmT +mmT

σ2
W

−
(
‖a+a‖2

2σ2
V

+ ‖m+m‖2
2σ2

W

)
1


• Find q0 ∈ SU(2) with π(q0) = r̄

• Let M2 := QL(q0)

[
0 0
0 − 1

2Σ−1

]
QL(q−1

0 )

• Find (r̄,Σ) such that LD(r̄,Σ) ≈ BH(M1 +M2)
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Kalman Filter Attitude Tracking

Discussions

Why (a,m) are used only for updating R but not Ω?

Incorrect independence assumption Rk ⊥ Ωk

Consideration of gyroscope bias and accel./magnet. disturbance

Do claims really hold?

Extension to SE(3)?
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Kalman Filter Attitude Tracking

Thank you.
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Appendix

Derivation of Kalman Filter (1)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

Denote X̂k|k := E[Xk|Y k
1 ]

Define the innovation sequence

Ỹk := Yk − E[Yk|Y k−1
1 ]

= Yk −HE[Xk|Y k−1
1 ]

From Gaussian assumption, one can show that Y k−1
1 ⊥ Ỹk
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Appendix

Derivation of Kalman Filter (2)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

Denote X̂k|k−1 := E[Xk|Y k−1
1 ] so that Ỹk = Yk −HX̂k|k−1

One can show that if (X,Y, Z) are jointly Gaussian and X ⊥ Y
then

E[Z|X,Y ] = E[Z|X] + E[Z|Y ]− E[Z],

so
X̂k|k = E[Xk|Y k

1 ] = X̂k|k−1 + E[Xk|Ỹk]

47 / 52



Appendix

Derivation of Kalman Filter (2)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

Denote X̂k|k−1 := E[Xk|Y k−1
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Appendix

Derivation of Kalman Filter (3)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

X̂k|k−1 = E[Xk|Y k−1
1 ] = FE[Xk−1|Y k−1

1 ] = FX̂k−1|k−1

Need to know E[Xk|Ỹk]
According to a well-known formula for jointly Gaussian r.v.s:

E[Xk|Ỹk] = E[XkỸ
T
k ]E[ỸkỸ

T
k ]−1Ỹk
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T
k ]E[ỸkỸ
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Appendix

Derivation of Kalman Filter (4)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

Ỹk = Yk − E[Yk|Y k−1
1 ] = H(Xk − X̂k|k−1) + Uk, so

E[ỸkỸ
T
k ] = HPk|k−1H

T +R, where

Pk|k−1 := E[(Xk − X̂k|k−1)(Xk − X̂k|k−1)T ]
This is the prediction uncertainty

Again from independence, E[XkỸ
T
k ] = Pk|k−1H

T
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Appendix

Derivation of Kalman Filter (5)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

Hence,
E[Xk|Ỹk] = KkỸk

where
Kk := Pk|k−1H

T (HPk|k−1H
T +R)−1

This is called the Kalman gain

We are to find the prediction uncertainty
Pk|k−1 := E[(Xk − X̂k|k−1)(Xk − X̂k|k−1)T ] from now on
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Appendix

Derivation of Kalman Filter (6)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

Xk − X̂k|k−1 = F (Xk−1 − X̂k−1|k−1) +Wk, so

Pk|k−1 = FPk−1|k−1F
T +Q

where
Pk−1|k−1 := E[(Xk−1 − X̂k−1|k−1)(Xk−1 − X̂k−1|k−1)T ]
This is the estimation uncertainty

From X̂k|k = X̂k|k−1 + E[Xk|Ỹk], one can derive the formula

Pk|k = (I−KkH)Pk|k−1
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From X̂k|k = X̂k|k−1 + E[Xk|Ỹk], one can derive the formula

Pk|k = (I−KkH)Pk|k−1

51 / 52



Appendix

Derivation of Kalman Filter (6)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

Xk − X̂k|k−1 = F (Xk−1 − X̂k−1|k−1) +Wk, so

Pk|k−1 = FPk−1|k−1F
T +Q

where
Pk−1|k−1 := E[(Xk−1 − X̂k−1|k−1)(Xk−1 − X̂k−1|k−1)T ]
This is the estimation uncertainty
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Appendix

Derivation of Kalman Filter (7)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

In summary, the overall procedure is done in two phases:
1 Prediction phase: compute X̂k|k−1, Pk|k−1 from X̂k−1|k−1,
Pk−1|k−1 using the formulas

X̂k|k−1 = FX̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T + Q

2 Update phase: compute X̂k|k, Pk|k from X̂k|k−1, Pk|k−1, and Yk
using the formulas

Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1

X̂k|k = X̂k|k−1 + Kk(Yk −HX̂k|k−1)
Pk|k = (I −KkH)Pk|k−1

52 / 52



Appendix

Derivation of Kalman Filter (7)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

In summary, the overall procedure is done in two phases:
1 Prediction phase: compute X̂k|k−1, Pk|k−1 from X̂k−1|k−1,
Pk−1|k−1 using the formulas

X̂k|k−1 = FX̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T + Q

2 Update phase: compute X̂k|k, Pk|k from X̂k|k−1, Pk|k−1, and Yk
using the formulas

Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1

X̂k|k = X̂k|k−1 + Kk(Yk −HX̂k|k−1)
Pk|k = (I −KkH)Pk|k−1

52 / 52



Appendix

Derivation of Kalman Filter (7)

System model:
Xk = FXk−1 +Wk

Yk = HXk + Uk

To compute: E[Xk|Y1, · · · , Yk]

In summary, the overall procedure is done in two phases:
1 Prediction phase: compute X̂k|k−1, Pk|k−1 from X̂k−1|k−1,
Pk−1|k−1 using the formulas

X̂k|k−1 = FX̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T + Q

2 Update phase: compute X̂k|k, Pk|k from X̂k|k−1, Pk|k−1, and Yk
using the formulas

Kk = Pk|k−1H
T (HPk|k−1H

T + R)−1

X̂k|k = X̂k|k−1 + Kk(Yk −HX̂k|k−1)
Pk|k = (I −KkH)Pk|k−1

52 / 52


	Kalman Filter
	Goal
	Kalman Filter
	How to Go Beyond?

	Attitude Tracking
	Problem Definition
	Diffusion Distribution
	Update Using Gyroscope
	Other Distributions
	Summary and Discussions

	Appendix
	Derivation of Kalman Filter


