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@ Studying algebras is radically different from studying vector spaces
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o LY(@), for a locally compact group G
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Applications

@ Spectral theorem and functional calculus

Operator semigroup theory and its applications to PDE

@ Abstract harmonic analysis

Ergodic theory

Quantum physics

And more...
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Definition
Definition 2.1 (Banach algebra)
An algebra A over C endowed with a norm ||-|| is called a Banach

algebra, if it is a Banach space and ||ab|| < ||a|| ||b]| for all a,b € A.

@ Let us assume every Banach algebra has the identity with
1]} = 1.
e Banach algebras w/o the identity can be “bad”
@ The operator L, :  — az can have the norm different from ||al|

o Interesting examples w/o the identity:
@ Co(X), where X: non-compact locally compact Hausdorff space
@ Algebra of compact operators on E, where E: infinite-dimensional
Banach space
o L'(G), where G: non-discrete locally compact group
o Approximate identity: a net (eq),cp such that
limgep req = limyep eqx = x for all x € A
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A continuous homomorphism ¢ : A — B between Banach algebras
must be short; that is, ||¢|| < 1.

Proposition 2.3

Every homomorphism ¢ : A — C from a Banach algebra A into C
must be continuous.

@ Algebraic structure and topological structure interoperate tightly!
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Proposition 2.4
For a € A, if there exist b,c € A with ab = ca = 1, then a is invertible

anda ' =b=c.

Proposition 2.5 (Neumann’s lemma)

o0 n

If la|| < 1, then 1 — a is invertible and (1 —a)™' =3>">° ja

Proposition 2.6

A* is an open set.
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Definition 2.7 (Spectrum)

For a € A, the spectrum of a is defined as

o(a):={AeC:a—Al ¢ A}

Corollary 2.8

o(a) is a compact subset of C.

@ o(a) encodes many useful information about a
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Definition

Banach Algebra Homomorphism

Spectrum and Invertibility (1)
Spectrum and Invertibility (2)
Spectrum and Invertibility (3)

Spectrum and Invertibility

@ For A ¢ o(a), Ry()\) := (a— A1)~! is called the resolvent function
of a

o After some complex analysis,
e o(a) is not empty (by Liouville's theorem)
o (Spectral radius formula)
lal, == sup{|A| : A€ o(a)} = lim [a”|"/"
n— oo

(by Cauchy's integral formula)
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Theorem 3.1 (Gelfand-Mazur)

A Banach algebra A which is a division ring must be isometrically
isomorphic to C.

Corollary 3.2

Assume A is a commutative unital Banach algebra. Then there is a
one-to-one correspondence between maximal ideals of A and nontrivial
homomorphisms into C.

Definition 3.3 (Spectrum)

Let us denote the set of all nontrivial homomorphisms ¢ : A — C as
SpecA and call it the spectrum of A.
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Gelfand Transform

Proposition 3.4

SpecA endowed with the weak-x topology is a compact Hausdorff
space.

@ Each element a € A defines a continuous function
a: SpecA — C as evaluation

Definition 3.5 (Gelfand transform)

The mapping * : A — C(SpecA) is called the Gelfand transform.

@ In general, the Gelfand transform is not injective nor surjective
@ The Gelfand transform is short, but not isometry in general
@ The Gelfand transform is injective iff A is semisimple

12/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X
o Point evaluations are elements of SpecA

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

o Point evaluations are elements of SpecA
o There are more elements in SpecA in general!

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

o Point evaluations are elements of SpecA
o There are more elements in SpecA in general!
e SpecA is some kind of compactification of X

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

o Point evaluations are elements of SpecA

o There are more elements in SpecA in general!

e SpecA is some kind of compactification of X
o SpecCy(X) is the Stone-Cech compactification of X
e SpeclUy(X) is the Samuel compactification of X
o SpecLip(X) is the Lipschitz compactification of X

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

o Point evaluations are elements of SpecA

o There are more elements in SpecA in general!

e SpecA is some kind of compactification of X
o SpecCy(X) is the Stone-Cech compactification of X
e SpeclUy(X) is the Samuel compactification of X
o SpecLip(X) is the Lipschitz compactification of X

o Let A=/YZ)

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

o Point evaluations are elements of SpecA
o There are more elements in SpecA in general!
e SpecA is some kind of compactification of X

o SpecCy(X) is the Stone-Cech compactification of X
e SpeclUy(X) is the Samuel compactification of X
o SpecLip(X) is the Lipschitz compactification of X

o Let A=/YZ)
o There is a bijection SpecA =2 §!

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

o Point evaluations are elements of SpecA
o There are more elements in SpecA in general!
e SpecA is some kind of compactification of X

o SpecCy(X) is the Stone-Cech compactification of X
e SpeclUy(X) is the Samuel compactification of X
o SpecLip(X) is the Lipschitz compactification of X
o Let A=/Y(7)
o There is a bijection SpecA =2 §!
e The above bijection is in fact a homeomorphism

13/24



Gelfand-Mazur Theorem

Gelfand Transform (1)

Gelfand Transform Gelfand Transform (2)

Examples

Spectrum and Gelfand Transform

Examples

@ Let A be an algebra of some “well-behaved” functions on a set X

o Point evaluations are elements of SpecA

o There are more elements in SpecA in general!

e SpecA is some kind of compactification of X
o SpecCy(X) is the Stone-Cech compactification of X
e SpeclUy(X) is the Samuel compactification of X
o SpecLip(X) is the Lipschitz compactification of X

o Let A=/YZ)
o There is a bijection SpecA =2 §!
e The above bijection is in fact a homeomorphism

o The Gelfand transform * : ¢1(Z) — C(S') is the Fourier transform
on Z
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Spectrum and Gelfand Transform

Proposition 3.6

An element a € A is invertible if and only if so is a € C(SpecA).

(=) Trivial; note that 1(¢) = ¢(1) =1 for all ¢ € SpecA.
(<) If a(p) = p(a) # 0 for all ¢ € SpecA, then a does not belong to
any maximal ideal in A, so (a) = A. O
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Spectrum and Gelfand Transform

Proposition 3.6
An element a € A is invertible if and only if so is a € C(SpecA).

Proof.

(=) Trivial; note that 1(¢) = ¢(1) =1 for all ¢ € SpecA.
(<) If a(p) = p(a) # 0 for all ¢ € SpecA, then a does not belong to
any maximal ideal in A, so (a) = A. O

Corollary 3.7

The spectrum o(a) is precisely the range of the function
a : SpecA — C. In particular, |a|, = ||a|
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Theorem 4.1 (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space. Then a subalgebra A of C(X) is
uniformly dense in C(X) if the following conditions hold:

@ A is unital; that is, A contains the constant function 1,

@ A is a x-subalgebra; that is, A is closed under the pointwise
complex conjugation, and

© A separates points in X.
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Theorem 4.1 (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space. Then a subalgebra A of C(X) is
uniformly dense in C(X) if the following conditions hold:

@ A is unital; that is, A contains the constant function 1,

@ A is a x-subalgebra; that is, A is closed under the pointwise
complex conjugation, and

© A separates points in X.
@ The image of the Gelfand transform = : A — C(SpecA)

e is unital, since 1(¢) = ¢(1) =1 for all ¢ € SpecA
e separates points in SpecA, by definition of SpecA
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Definition 4.2 (C*-algebra)

A Banach algebra A endowed with an involution * : A — A is called a
C*-algebra, if:

Q = is antilinear; that is, (ax + By)* = az* + By* for all a, 8 € C,

x,y € A.
Q (zy)* =y*z* forall z,y € A.
Q ||z*z|| = ||z]|? for all z € A.
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C*-algebra, if:

Q = is antilinear; that is, (ax + By)* = az* + By* for all a, 8 € C,

x,y € A.
Q (zy)* =y*z* forall z,y € A.
Q ||z*z|| = ||z]|? for all z € A.

@ Most of function algebras w/ uniform norm are C*-algebras

@ The algebra L(E) of all bounded linear operators on a Hilbert
space E is a C*-algebra

@ The algebra L'(G) nor M(G) are not C*-algebras in general
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Definition 4.3

An element x € A is said to be self-adjoint if z* = x, and is called
normal if ¥z = xx*.

Proposition 4.4

If x is normal, then ||z| = |z|, = ||Z|| -

Proof.

When z is self-adjoint, use the spectral radius formula.
For the general case,

2 a9 2
[z]|* = [lz*z|| = |=*=|, < |z], <[z

where (a) follows from the spectral radius formula. O

17 /24



Stone-Weierstrass Theorem

C*-algebra

Self-adjoint and Normal Elements
C*-Algebra *-Homomorphisms

Commutative Gelfand-Naimark Theorem

*~-Homomorphisms

Definition 4.5

A x-homomorphism between C*-algebras A, B is a homomorphism
@ : A — B preserving the involution.
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*~-Homomorphisms

Definition 4.5

A x-homomorphism between C*-algebras A, B is a homomorphism
@ : A — B preserving the involution.

Proposition 4.6
Every ¢ € SpecA is a x-homomorphism, if A is a C*-algebra.

Proof.

Suffices to show that self-adjoint elements become real numbers.
(1) Estimate using exp.

(2) Estimate using square. O
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Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C*-algebra A, the Gelfand transform
‘1A — C(SpecA) is an isometric x-isomorphism.
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Commutative Gelfand-Naimark Theorem

Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C*-algebra A, the Gelfand transform
‘1A — C(SpecA) is an isometric x-isomorphism.

Proof.

Isometry: every element is normal
Dense: Stone-Weierstrass theorem
Surjectivity follows from the completeness. O

@ Spec(-) and C(-) are adjoint pairs
o (category of commutative unital C*-algebras)> (category of
compact Hausdorff spaces)
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is itself a C*-algebra
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Functional Calculus

@ Suppose A is a C*-algebra and a € A

@ The smallest closed unital *-subalgebra of A containing a, say B,
is itself a C*-algebra

@ (B is commutative) < (a is normal)

Theorem 5.1

When a is normal, there is a natural homeomorphism SpecB = o (a)

Define @ : SpecB — o(a) as @ : ¢ — a(y).
Injective: if p(a) =1(a), then ¢ = .
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Functional Calculus

@ Suppose A is a C*-algebra and a € A

@ The smallest closed unital *-subalgebra of A containing a, say B,
is itself a C*-algebra

@ (B is commutative) < (a is normal)

Theorem 5.1

When a is normal, there is a natural homeomorphism SpecB = o (a)

Define @ : SpecB — o(a) as @ : ¢ — a(y).

Injective: if p(a) =1(a), then ¢ = .

Surjective: the spectrum taken inside B is exactly o(a).

(Nontrivial) O
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Corollary 5.2 (Functional calculus theorem)

When a is normal, there is a natural isometric *-isomorphism
B = C(o(a)), given by a — (A +— X). Under this isomorphism, we have

o(f(a)) = flo(a)] for each f € C(o(a)).
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When a is normal, there is a natural isometric *-isomorphism
B = C(o(a)), given by a — (A +— X). Under this isomorphism, we have

o(f(a)) = flo(a)] for each f € C(o(a)).

@ The polynomial p(A) = ¢, A" + -+ + ¢o corresponds to the
element p(a) =cpa™+ -+ +coin A

@ By Stone-Weierstrass theorem, C(o(a)) is the set of functions on
o(a) that can be uniformly approximated by polynomials in A and
A
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E: Hilbert space, T": bounded normal operator on E

B: the smallest closed unital *-subalgebra of L(E) containing T

For given u,v € E, A+~ (u, Av) is a continuous linear functional
on B=C(a(T))

By Riesz representation theorem, such a functional can be
represented as a complex regular Borel measure p,,,, on o(T')
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Application: Spectral Theorem for Bounded Normal Operators
@ For given f, (gf)guK is a subnet of (g)gillx' o)
lim lm (u,g(T)f(T)v) = lim lim (u,g(T)v) = (u, p(K)v)

fllk gk fllk gllk

@ Using a similar argument — each p(G) is a projection

N
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@ For given f, (gf)guK is a subnet of <g)g¢1K' o)
lim lim (u,g(T)f(T)v) = lim lim (u,g(T)v) = (u, p(K)v
Jim T {u, g(T) f(T)v) = Jim lim (u, g(T)v) = {u, p(K)v)

@ Using a similar argument — each p(G) is a projection
@ Hence, p is a projection-valued measure

Theorem 5.3 (Spectral theorem for bounded normal operators)

If T is a bounded normal operator on a Hilbert space E, then there
uniquely exists a projection-valued regular Borel measure pp on o(T)
such that

(u, F(T)v) = / o T oz )

for all f € C(o(T)) and u,v € E.
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