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Functional analysis: study of infinite-dimensional vector spaces
using both algebraic methods and the notion of limits.

Some of those spaces are not just vector spaces
They are algebras

Studying algebras is radically different from studying vector spaces
Rings vs Abelian groups
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Introduction
Applications

Three Main Classes of Infinite-Dimensional Algebras

1 Function algebras, with pointwise multiplication
Algebra of bounded functions on a set
Algebra of bounded continuous functions on a topological space
Algebra of bounded uniformly continuous functions on a uniform
space
Algebra of bounded measurable functions on a measurable space
L∞-space on a measure space
Algebra of bounded Lipschitz functions on a metric space

2 Operator algebras, with composition
Algebra of bounded linear operators on a Banach space
Algebra of compact linear operators on a Banach space

3 Group algebras, with convolution
L1(G), for a locally compact group G
M(G), algebra of complex regular Borel measures on G
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Applications

Spectral theorem and functional calculus

Operator semigroup theory and its applications to PDE

Abstract harmonic analysis

Ergodic theory

Quantum physics

And more...
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Definition
Homomorphism
Spectrum and Invertibility (1)
Spectrum and Invertibility (2)
Spectrum and Invertibility (3)

Definition

Definition 2.1 (Banach algebra)

An algebra A over C endowed with a norm ‖·‖ is called a Banach
algebra, if it is a Banach space and ‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A.

Let us assume every Banach algebra has the identity with
‖1‖ = 1.

Banach algebras w/o the identity can be “bad”
The operator La : x 7→ ax can have the norm different from ‖a‖

Interesting examples w/o the identity:
C0(X), where X: non-compact locally compact Hausdorff space
Algebra of compact operators on E, where E: infinite-dimensional
Banach space
L1(G), where G: non-discrete locally compact group

Approximate identity: a net (eα)α∈D such that
limα∈D xeα = limα∈D eαx = x for all x ∈ A
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Proposition 2.2
A continuous homomorphism ϕ : A → B between Banach algebras
must be short; that is, ‖ϕ‖ ≤ 1.

Proposition 2.3
Every homomorphism ϕ : A → C from a Banach algebra A into C
must be continuous.

Algebraic structure and topological structure interoperate tightly!
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Proposition 2.4
For a ∈ A, if there exist b, c ∈ A with ab = ca = 1, then a is invertible
and a−1 = b = c.

Proposition 2.5 (Neumann’s lemma)

If ‖a‖ < 1, then 1− a is invertible and (1− a)−1 =
∑∞

n=0 a
n.

Proposition 2.6

A× is an open set.
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Spectrum and Invertibility

Definition 2.7 (Spectrum)

For a ∈ A, the spectrum of a is defined as

σ(a) :=
{
λ ∈ C : a− λ1 /∈ A×

}

Corollary 2.8

σ(a) is a compact subset of C.

σ(a) encodes many useful information about a
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Spectrum and Invertibility

For λ /∈ σ(a), Ra(λ) := (a− λ1)−1 is called the resolvent function
of a

After some complex analysis,
σ(a) is not empty (by Liouville’s theorem)
(Spectral radius formula)

|a|σ := sup {|λ| : λ ∈ σ(a)} = lim
n→∞

‖an‖1/n

(by Cauchy’s integral formula)
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For λ /∈ σ(a), Ra(λ) := (a− λ1)−1 is called the resolvent function
of a
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Gelfand Transform (1)
Gelfand Transform (2)
Examples
Spectrum and Gelfand Transform

Gelfand-Mazur Theorem

Theorem 3.1 (Gelfand-Mazur)

A Banach algebra A which is a division ring must be isometrically
isomorphic to C.

Corollary 3.2
Assume A is a commutative unital Banach algebra. Then there is a
one-to-one correspondence between maximal ideals of A and nontrivial
homomorphisms into C.

Definition 3.3 (Spectrum)

Let us denote the set of all nontrivial homomorphisms ϕ : A → C as
SpecA and call it the spectrum of A.
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Gelfand Transform

Assume A is commutative from now on

An intuition: commutative Banach algebras are function algebras,
while noncommutative Banach algebras are operator algebras

Functions on which set?
Point evaluation is a homomorphism into C
SpecA is a good candidate!
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Gelfand Transform

Proposition 3.4
SpecA endowed with the weak-∗ topology is a compact Hausdorff
space.

Each element a ∈ A defines a continuous function
â : SpecA → C as evaluation

Definition 3.5 (Gelfand transform)

The mapping ·̂ : A → C(SpecA) is called the Gelfand transform.

In general, the Gelfand transform is not injective nor surjective
The Gelfand transform is short, but not isometry in general
The Gelfand transform is injective iff A is semisimple
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Examples

Let A be an algebra of some “well-behaved” functions on a set X

Point evaluations are elements of SpecA
There are more elements in SpecA in general!
SpecA is some kind of compactification of X

Spec Cb(X) is the Stone-Čech compactification of X
SpecUb(X) is the Samuel compactification of X
Spec Lip(X) is the Lipschitz compactification of X

Let A = `1(Z)

There is a bijection SpecA ∼= S1

The above bijection is in fact a homeomorphism
The Gelfand transform ·̂ : `1(Z) → C(S1) is the Fourier transform
on Z
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Spectrum and Gelfand Transform

Proposition 3.6
An element a ∈ A is invertible if and only if so is â ∈ C(SpecA).

Proof.

(⇒) Trivial; note that 1̂(ϕ) = ϕ(1) = 1 for all ϕ ∈ SpecA.
(⇐) If â(ϕ) = ϕ(a) 6= 0 for all ϕ ∈ SpecA, then a does not belong to
any maximal ideal in A, so (a) = A.

Corollary 3.7
The spectrum σ(a) is precisely the range of the function
â : SpecA → C. In particular, |a|σ = ‖â‖∞.
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Proof.

(⇒) Trivial; note that 1̂(ϕ) = ϕ(1) = 1 for all ϕ ∈ SpecA.
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14 / 24



What and Why
Banach Algebra

Gelfand Transform
C∗-Algebra

Functional Calculus

Gelfand-Mazur Theorem
Gelfand Transform (1)
Gelfand Transform (2)
Examples
Spectrum and Gelfand Transform

Spectrum and Gelfand Transform

Proposition 3.6
An element a ∈ A is invertible if and only if so is â ∈ C(SpecA).
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14 / 24



What and Why
Banach Algebra

Gelfand Transform
C∗-Algebra

Functional Calculus

Stone-Weierstrass Theorem
C∗-algebra
Self-adjoint and Normal Elements
∗-Homomorphisms
Commutative Gelfand-Naimark Theorem

Stone-Weierstrass Theorem

Theorem 4.1 (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space. Then a subalgebra A of C(X) is
uniformly dense in C(X) if the following conditions hold:

1 A is unital; that is, A contains the constant function 1,
2 A is a ∗-subalgebra; that is, A is closed under the pointwise

complex conjugation, and
3 A separates points in X.

The image of the Gelfand transform ·̂ : A → C(SpecA)

is unital, since 1̂(ϕ) = ϕ(1) = 1 for all ϕ ∈ SpecA
separates points in SpecA, by definition of SpecA
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C∗-algebra

Definition 4.2 (C∗-algebra)

A Banach algebra A endowed with an involution ∗ : A → A is called a
C∗-algebra, if:

1 ∗ is antilinear; that is, (αx+ βy)∗ = ᾱx∗ + β̄y∗ for all α, β ∈ C,
x, y ∈ A.

2 (xy)∗ = y∗x∗ for all x, y ∈ A.
3 ‖x∗x‖ = ‖x‖2 for all x ∈ A.

Most of function algebras w/ uniform norm are C∗-algebras
The algebra L(E) of all bounded linear operators on a Hilbert
space E is a C∗-algebra
The algebra L1(G) nor M(G) are not C∗-algebras in general
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Self-adjoint and Normal Elements

Definition 4.3
An element x ∈ A is said to be self-adjoint if x∗ = x, and is called
normal if x∗x = xx∗.

Proposition 4.4
If x is normal, then ‖x‖ = |x|σ = ‖x̂‖∞.

Proof.
When x is self-adjoint, use the spectral radius formula.
For the general case,

‖x‖2 = ‖x∗x‖ = |x∗x|σ
(a)

≤ |x|2σ ≤ ‖x‖
2

where (a) follows from the spectral radius formula.
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Self-adjoint and Normal Elements

Definition 4.3
An element x ∈ A is said to be self-adjoint if x∗ = x, and is called
normal if x∗x = xx∗.

Proposition 4.4
If x is normal, then ‖x‖ = |x|σ = ‖x̂‖∞.

Proof.
When x is self-adjoint, use the spectral radius formula.
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C∗-algebra
Self-adjoint and Normal Elements
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Commutative Gelfand-Naimark Theorem

∗-Homomorphisms

Definition 4.5
A ∗-homomorphism between C∗-algebras A,B is a homomorphism
ϕ : A → B preserving the involution.

Proposition 4.6
Every ϕ ∈ SpecA is a ∗-homomorphism, if A is a C∗-algebra.

Proof.
Suffices to show that self-adjoint elements become real numbers.
(1) Estimate using exp.
(2) Estimate using square.
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Commutative Gelfand-Naimark Theorem

Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C∗-algebra A, the Gelfand transform
·̂ : A → C(SpecA) is an isometric ∗-isomorphism.

Proof.
Isometry: every element is normal
Dense: Stone-Weierstrass theorem
Surjectivity follows from the completeness.

Spec( · ) and C( · ) are adjoint pairs
(category of commutative unital C∗-algebras)∼= (category of
compact Hausdorff spaces)
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What and Why
Banach Algebra

Gelfand Transform
C∗-Algebra

Functional Calculus

Functional Calculus (1)
Functional Calculus (2)
Application: Spectral Theorem (1)
Application: Spectral Theorem (2)
Application: Spectral Theorem (3)

Functional Calculus

Suppose A is a C∗-algebra and a ∈ A

The smallest closed unital ∗-subalgebra of A containing a, say B,
is itself a C∗-algebra
(B is commutative) ⇔ (a is normal)

Theorem 5.1
When a is normal, there is a natural homeomorphism SpecB ∼= σ(a)

Proof.
Define Φ : SpecB → σ(a) as Φ : ϕ 7→ â(ϕ).
Injective: if ϕ(a) = ψ(a), then ϕ = ψ.
Surjective: the spectrum taken inside B is exactly σ(a).
(Nontrivial)
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Functional Calculus (1)
Functional Calculus (2)
Application: Spectral Theorem (1)
Application: Spectral Theorem (2)
Application: Spectral Theorem (3)

Functional Calculus

Corollary 5.2 (Functional calculus theorem)

When a is normal, there is a natural isometric ∗-isomorphism
B ∼= C(σ(a)), given by a 7→ (λ 7→ λ). Under this isomorphism, we have
σ(f(a)) = f [σ(a)] for each f ∈ C(σ(a)).

The polynomial p(λ) = cnλ
n + · · · + c0 corresponds to the

element p(a) = cna
n + · · · + c0 in A

By Stone-Weierstrass theorem, C(σ(a)) is the set of functions on
σ(a) that can be uniformly approximated by polynomials in λ and
λ.
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Gelfand Transform
C∗-Algebra

Functional Calculus

Functional Calculus (1)
Functional Calculus (2)
Application: Spectral Theorem (1)
Application: Spectral Theorem (2)
Application: Spectral Theorem (3)

Application: Spectral Theorem for Bounded Normal Operators

E: Hilbert space, T : bounded normal operator on E

B: the smallest closed unital ∗-subalgebra of L(E) containing T

For given u, v ∈ E, A 7→ 〈u,Av〉 is a continuous linear functional
on B ∼= C(σ(T ))

By Riesz representation theorem, such a functional can be
represented as a complex regular Borel measure ρu,v on σ(T )

Define ρ : B(σ(T )) → L(E) as 〈u, ρ(G)v〉 := ρu,v(G), then

〈u, f(T )v〉 =

∫
σ(T )

f(λ) 〈u, dρ(λ)v〉

for each f ∈ C(σ(T ))
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C∗-Algebra

Functional Calculus

Functional Calculus (1)
Functional Calculus (2)
Application: Spectral Theorem (1)
Application: Spectral Theorem (2)
Application: Spectral Theorem (3)

Application: Spectral Theorem for Bounded Normal Operators

Claim: each ρ(G) is self-adjoint

If f : nonnegative, then 〈u, f(T )u〉 =
∥∥√f(T )u

∥∥2 ≥ 0, so ρu,u is a
positive measure
Then the claim follows from polarization identity

Claim: each ρ(K), K: compact, is a projection
By regularity,

ρu,v(K) = lim
f↓1K

∫
σ(A)

f(λ)dρu,v(λ) = lim
f↓1K

〈u, f(T )v〉 ,

〈
u, ρ(K)2v

〉
= lim

f↓1K

〈u, ρ(K)f(T )v〉 = lim
f↓1K

lim
g↓1K

〈u, g(T )f(T )v〉
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ρu,v(K) = lim
f↓1K

∫
σ(A)

f(λ)dρu,v(λ) = lim
f↓1K

〈u, f(T )v〉 ,

〈
u, ρ(K)2v

〉
= lim

f↓1K

〈u, ρ(K)f(T )v〉 = lim
f↓1K

lim
g↓1K

〈u, g(T )f(T )v〉
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For given f , (gf)g↓1K
is a subnet of (g)g↓1K

, so

lim
f↓1K

lim
g↓1K

〈u, g(T )f(T )v〉 = lim
f↓1K

lim
g↓1K

〈u, g(T )v〉 = 〈u, ρ(K)v〉

Using a similar argument → each ρ(G) is a projection
Hence, ρ is a projection-valued measure

Theorem 5.3 (Spectral theorem for bounded normal operators)

If T is a bounded normal operator on a Hilbert space E, then there
uniquely exists a projection-valued regular Borel measure ρT on σ(T )
such that

〈u, f(T )v〉 =

∫
σ(T )

f(λ) 〈u, dρT (λ)v〉

for all f ∈ C(σ(T )) and u, v ∈ E.
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