Introduction to Gelfand Theory

Junekey Jeon

ETRI

June 18, 2018

Introduction Applications

Introduction

• Functional analysis: study of infinite-dimensional vector spaces using both *algebraic methods* and the notion of *limits*.

Introduction Applications

- Functional analysis: study of infinite-dimensional vector spaces using both *algebraic methods* and the notion of *limits*.
- Some of those spaces are not just vector spaces

Introduction Applications

- Functional analysis: study of infinite-dimensional vector spaces using both *algebraic methods* and the notion of *limits*.
- Some of those spaces are not just vector spaces
 - They are *algebras*

Introduction Applications

- Functional analysis: study of infinite-dimensional vector spaces using both *algebraic methods* and the notion of *limits*.
- Some of those spaces are not just vector spaces
 They are algebras
- Studying algebras is radically different from studying vector spaces

Introduction Applications

- Functional analysis: study of infinite-dimensional vector spaces using both *algebraic methods* and the notion of *limits*.
- Some of those spaces are **not just vector spaces**
 - They are *algebras*
- Studying algebras is radically different from studying vector spaces
 - Rings vs Abelian groups

Introduction Applications

Introduction Applications

Three Main Classes of Infinite-Dimensional Algebras

In Function algebras, with pointwise multiplication

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space

Introduction Applications

- In Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space
 - Algebra of bounded Lipschitz functions on a metric space

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space
 - Algebra of bounded Lipschitz functions on a metric space
- **2** Operator algebras, with composition

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space
 - Algebra of bounded Lipschitz functions on a metric space
- ② Operator algebras, with composition
 - Algebra of bounded linear operators on a Banach space

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space
 - Algebra of bounded Lipschitz functions on a metric space
- ② Operator algebras, with composition
 - Algebra of bounded linear operators on a Banach space
 - Algebra of compact linear operators on a Banach space

Introduction Applications

- **1** Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space
 - Algebra of bounded Lipschitz functions on a metric space
- ② Operator algebras, with composition
 - Algebra of bounded linear operators on a Banach space
 - Algebra of compact linear operators on a Banach space
- **I** Group algebras, with convolution

Introduction Applications

- In Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space
 - Algebra of bounded Lipschitz functions on a metric space
- Operator algebras, with composition
 - Algebra of bounded linear operators on a Banach space
 - Algebra of compact linear operators on a Banach space
- **I** Group algebras, with convolution
 - $L^1(G)$, for a locally compact group G

Introduction Applications

- In Function algebras, with pointwise multiplication
 - Algebra of bounded functions on a set
 - Algebra of bounded continuous functions on a topological space
 - Algebra of bounded uniformly continuous functions on a uniform space
 - Algebra of bounded measurable functions on a measurable space
 - L^{∞} -space on a measure space
 - Algebra of bounded Lipschitz functions on a metric space
- Operator algebras, with composition
 - Algebra of bounded linear operators on a Banach space
 - Algebra of compact linear operators on a Banach space
- **I** Group algebras, with convolution
 - $L^1(G)$, for a locally compact group G
 - M(G), algebra of complex regular Borel measures on G

Introduction Applications

Applications

- Spectral theorem and functional calculus
- Operator semigroup theory and its applications to PDE
- Abstract harmonic analysis
- Ergodic theory
- Quantum physics
- And more...

Definition

Definition 2.1 (Banach algebra)

Definition

Definition 2.1 (Banach algebra)

An algebra A over \mathbb{C} endowed with a norm $\|\cdot\|$ is called a *Banach* algebra, if it is a Banach space and $\|ab\| \leq \|a\| \|b\|$ for all $a, b \in A$.

• Let us assume every Banach algebra has the $\mathit{identity}$ with $\|1\|=1.$

Definition

Definition 2.1 (Banach algebra)

- Let us assume every Banach algebra has the *identity* with $\|1\| = 1$.
 - Banach algebras w/o the identity can be "bad"

Definition

Definition 2.1 (Banach algebra)

- Let us assume every Banach algebra has the *identity* with $\|1\| = 1$.
 - Banach algebras w/o the identity can be "bad"
 - $\bullet~$ The operator $L_a:x\mapsto ax$ can have the norm different from $\|a\|$

Definition

Definition 2.1 (Banach algebra)

- Let us assume every Banach algebra has the *identity* with ||1|| = 1.
 - Banach algebras w/o the identity can be "bad"
 - $\bullet~$ The operator $L_a:x\mapsto ax$ can have the norm different from $\|a\|$
 - Interesting examples w/o the identity:

Definition

Definition 2.1 (Banach algebra)

- Let us assume every Banach algebra has the *identity* with ||1|| = 1.
 - Banach algebras w/o the identity can be "bad"
 - The operator $L_a: x\mapsto ax$ can have the norm different from $\|a\|$
 - Interesting examples w/o the identity:
 - $\mathcal{C}_0(X)$, where X: non-compact locally compact Hausdorff space

Definition

Definition 2.1 (Banach algebra)

- Let us assume every Banach algebra has the *identity* with ||1|| = 1.
 - Banach algebras w/o the identity can be "bad"
 - The operator $L_a: x\mapsto ax$ can have the norm different from $\|a\|$
 - Interesting examples w/o the identity:
 - $\mathcal{C}_0(X)$, where X: non-compact locally compact Hausdorff space
 - Algebra of compact operators on E, where $E\colon$ infinite-dimensional Banach space

Definition

Definition 2.1 (Banach algebra)

- Let us assume every Banach algebra has the *identity* with ||1|| = 1.
 - Banach algebras w/o the identity can be "bad"
 - The operator $L_a: x\mapsto ax$ can have the norm different from $\|a\|$
 - Interesting examples w/o the identity:
 - $\mathcal{C}_0(X)$, where X: non-compact locally compact Hausdorff space
 - Algebra of compact operators on E, where $E\colon$ infinite-dimensional Banach space
 - $L^1(G)$, where G: non-discrete locally compact group

Definition

Definition 2.1 (Banach algebra)

- Let us assume every Banach algebra has the *identity* with $\|1\| = 1$.
 - Banach algebras w/o the identity can be "bad"
 - The operator $L_a: x\mapsto ax$ can have the norm different from $\|a\|$
 - Interesting examples w/o the identity:
 - $\mathcal{C}_0(X)$, where X: non-compact locally compact Hausdorff space
 - Algebra of compact operators on E, where E : infinite-dimensional Banach space
 - $L^1(G)$, where G: non-discrete locally compact group
 - Approximate identity: a net $(e_{\alpha})_{\alpha \in D}$ such that $\lim_{\alpha \in D} xe_{\alpha} = \lim_{\alpha \in D} e_{\alpha}x = x$ for all $x \in A$

Homomorphism

Proposition 2.2

A continuous homomorphism $\varphi: A \to B$ between Banach algebras must be **short**; that is, $\|\varphi\| \le 1$.

Homomorphism

Proposition 2.2

A continuous homomorphism $\varphi: A \to B$ between Banach algebras must be **short**; that is, $\|\varphi\| \le 1$.

Proposition 2.3

Every homomorphism $\varphi: A \to \mathbb{C}$ from a Banach algebra A into \mathbb{C} must be continuous.

Homomorphism

Proposition 2.2

A continuous homomorphism $\varphi: A \to B$ between Banach algebras must be **short**; that is, $\|\varphi\| \le 1$.

Proposition 2.3

Every homomorphism $\varphi: A \to \mathbb{C}$ from a Banach algebra A into \mathbb{C} must be continuous.

• Algebraic structure and topological structure interoperate tightly!

What and Why	Definition
Banach Algebra	Homomorphism
Gelfand Transform	Spectrum and Invertibility (1)
C^* -Algebra	Spectrum and Invertibility (2)
Functional Calculus	Spectrum and Invertibility (3)

Spectrum and Invertibility

Proposition 2.4

For $a \in A$, if there exist $b, c \in A$ with ab = ca = 1, then a is invertible and $a^{-1} = b = c$.

What and Why	Definition
Banach Algebra	Homomorphism
Gelfand Transform	Spectrum and Invertibility (1)
C^* -Algebra	Spectrum and Invertibility (2)
Functional Calculus	Spectrum and Invertibility (3)

Spectrum and Invertibility

Proposition 2.4

For $a \in A$, if there exist $b, c \in A$ with ab = ca = 1, then a is invertible and $a^{-1} = b = c$.

Proposition 2.5 (Neumann's lemma)

If ||a|| < 1, then 1 - a is invertible and $(1 - a)^{-1} = \sum_{n=0}^{\infty} a^n$.

What and Why	Definition
Banach Algebra	Homomorphism
Gelfand Transform	Spectrum and Invertibility (1)
C^* -Algebra	Spectrum and Invertibility (2)
Functional Calculus	Spectrum and Invertibility (3)

Spectrum and Invertibility

Proposition 2.4

For $a \in A$, if there exist $b, c \in A$ with ab = ca = 1, then a is invertible and $a^{-1} = b = c$.

Proposition 2.5 (Neumann's lemma)

If ||a|| < 1, then 1 - a is invertible and $(1 - a)^{-1} = \sum_{n=0}^{\infty} a^n$.

Proposition 2.6

 A^{\times} is an open set.
What and Why
 Definition

 Banach Algebra
 Homomorphism

 Gelfand Transform
 Spectrum and Invertibility (1)

 C*-Algebra
 Spectrum and Invertibility (2)

 Functional Calculus
 Spectrum and Invertibility (3)

Spectrum and Invertibility

Definition 2.7 (Spectrum)

For $a \in A$, the *spectrum* of a is defined as

$$\sigma(a) := \left\{ \lambda \in \mathbb{C} : a - \lambda 1 \notin A^{\times} \right\}$$

 What and Why
 Definition

 Banach Algebra
 Homomorphism

 Gelfand Transform
 Spectrum and Invertibility (1)

 C*-Algebra
 Spectrum and Invertibility (2)

 Functional Calculus
 Spectrum and Invertibility (3)

Spectrum and Invertibility

Definition 2.7 (Spectrum)

For $a \in A$, the *spectrum* of a is defined as

$$\sigma(a) := \left\{ \lambda \in \mathbb{C} : a - \lambda 1 \notin A^{\times} \right\}$$

Corollary 2.8

 $\sigma(a)$ is a compact subset of \mathbb{C} .

 What and Why
 Definition

 Banach Algebra
 Homomorphism

 Gelfand Transform
 Spectrum and Invertibility (1)

 C*-Algebra
 Spectrum and Invertibility (2)

 Functional Calculus
 Spectrum and Invertibility (3)

Spectrum and Invertibility

Definition 2.7 (Spectrum)

For $a \in A$, the *spectrum* of a is defined as

$$\sigma(a) := \left\{ \lambda \in \mathbb{C} : a - \lambda 1 \notin A^{\times} \right\}$$

Corollary 2.8

 $\sigma(a)$ is a compact subset of \mathbb{C} .

• $\sigma(a)$ encodes many useful information about a

What and Why	Definition
Banach Algebra	Homomorphism
Gelfand Transform	Spectrum and Invertibility (1)
C^* -Algebra	Spectrum and Invertibility (2)
Functional Calculus	Spectrum and Invertibility (3)

• For $\lambda \notin \sigma(a),$ $R_a(\lambda):=(a-\lambda 1)^{-1}$ is called the resolvent function of a

What and Why	Definition
Banach Algebra	Homomorphism
Gelfand Transform	Spectrum and Invertibility (1)
C^* -Algebra	Spectrum and Invertibility (2)
Functional Calculus	Spectrum and Invertibility (3)

- For $\lambda \notin \sigma(a), \, R_a(\lambda) := (a-\lambda 1)^{-1}$ is called the resolvent function of a
- After some complex analysis,

What and Why	Definition
Banach Algebra	Homomorphism
Gelfand Transform	Spectrum and Invertibility (1)
C^* -Algebra	Spectrum and Invertibility (2)
Functional Calculus	Spectrum and Invertibility (3)

- For $\lambda \notin \sigma(a), \, R_a(\lambda) := (a-\lambda 1)^{-1}$ is called the resolvent function of a
- After some complex analysis,
 - $\sigma(a)$ is not empty (by Liouville's theorem)

What and Why	Definition
Banach Algebra	Homomorphism
Gelfand Transform	Spectrum and Invertibility (1)
C^* -Algebra	Spectrum and Invertibility (2)
Functional Calculus	Spectrum and Invertibility (3)

- For $\lambda \notin \sigma(a), \, R_a(\lambda) := (a-\lambda 1)^{-1}$ is called the resolvent function of a
- After some complex analysis,
 - $\sigma(a)$ is not empty (by Liouville's theorem)
 - (Spectral radius formula)

$$|a|_{\sigma} := \sup \left\{ |\lambda| : \lambda \in \sigma(a) \right\} = \lim_{n \to \infty} \left\| a^n \right\|^{1/n}$$

(by Cauchy's integral formula)

Gelfand-Mazur Theorem Gelfand Transform (1) Gelfand Transform (2) Examples Spectrum and Gelfand Transform

Gelfand-Mazur Theorem

Theorem 3.1 (Gelfand-Mazur)

A Banach algebra A which is a division ring must be isometrically isomorphic to \mathbb{C} .

Gelfand-Mazur Theorem Gelfand Transform (1) Gelfand Transform (2) Examples Spectrum and Gelfand Transform

Gelfand-Mazur Theorem

Theorem 3.1 (Gelfand-Mazur)

A Banach algebra A which is a division ring must be isometrically isomorphic to \mathbb{C} .

Corollary 3.2

Assume A is a commutative unital Banach algebra. Then there is a one-to-one correspondence between maximal ideals of A and nontrivial homomorphisms into \mathbb{C} .

Gelfand-Mazur Theorem Gelfand Transform (1) Gelfand Transform (2) Examples Spectrum and Gelfand Transform

Gelfand-Mazur Theorem

Theorem 3.1 (Gelfand-Mazur)

A Banach algebra A which is a division ring must be isometrically isomorphic to \mathbb{C} .

Corollary 3.2

Assume A is a commutative unital Banach algebra. Then there is a one-to-one correspondence between maximal ideals of A and nontrivial homomorphisms into \mathbb{C} .

Definition 3.3 (Spectrum)

Let us denote the set of all nontrivial homomorphisms $\varphi: A \to \mathbb{C}$ as $\operatorname{Spec} A$ and call it the *spectrum* of A.

Gelfand Transform

 $\bullet\,$ Assume A is commutative from now on

- $\bullet\,$ Assume A is commutative from now on
- An intuition: *commutative* Banach algebras are *function* algebras, while *noncommutative* Banach algebras are *operator* algebras

- $\bullet\,$ Assume A is commutative from now on
- An intuition: *commutative* Banach algebras are *function* algebras, while *noncommutative* Banach algebras are *operator* algebras
- Functions on which set?

- $\bullet\,$ Assume A is commutative from now on
- An intuition: *commutative* Banach algebras are *function* algebras, while *noncommutative* Banach algebras are *operator* algebras
- Functions on which set?
 - $\bullet\,$ Point evaluation is a homomorphism into $\mathbb C$

- $\bullet\,$ Assume A is commutative from now on
- An intuition: *commutative* Banach algebras are *function* algebras, while *noncommutative* Banach algebras are *operator* algebras
- Functions on which set?
 - $\bullet\,$ Point evaluation is a homomorphism into $\mathbb C$
 - SpecA is a good candidate!

Gelfand Transform

Proposition 3.4

 $\operatorname{Spec} A$ endowed with the weak-* topology is a compact Hausdorff space.

Gelfand Transform

Proposition 3.4

 $\operatorname{Spec} A$ endowed with the weak-* topology is a compact Hausdorff space.

• Each element $a \in A$ defines a continuous function $\hat{a} : \operatorname{Spec} A \to \mathbb{C}$ as evaluation

Gelfand Transform

Proposition 3.4

 $\operatorname{Spec} A$ endowed with the weak-* topology is a compact Hausdorff space.

• Each element $a \in A$ defines a continuous function $\hat{a} : \operatorname{Spec} A \to \mathbb{C}$ as evaluation

Definition 3.5 (Gelfand transform)

The mapping $\hat{\cdot} : A \to \mathcal{C}(\operatorname{Spec} A)$ is called the *Gelfand transform*.

Gelfand Transform

Proposition 3.4

 $\operatorname{Spec} A$ endowed with the weak-* topology is a compact Hausdorff space.

• Each element $a \in A$ defines a continuous function $\hat{a} : \operatorname{Spec} A \to \mathbb{C}$ as evaluation

Definition 3.5 (Gelfand transform)

The mapping $\hat{\cdot} : A \to \mathcal{C}(\operatorname{Spec} A)$ is called the *Gelfand transform*.

• In general, the Gelfand transform is not injective nor surjective

Gelfand Transform

Proposition 3.4

 $\operatorname{Spec} A$ endowed with the weak-* topology is a compact Hausdorff space.

• Each element $a \in A$ defines a continuous function $\hat{a}: \operatorname{Spec} A \to \mathbb{C}$ as evaluation

Definition 3.5 (Gelfand transform)

The mapping $\hat{\cdot} : A \to \mathcal{C}(\operatorname{Spec} A)$ is called the *Gelfand transform*.

- In general, the Gelfand transform is not injective nor surjective
- The Gelfand transform is short, but not isometry in general

Gelfand Transform

Proposition 3.4

 $\operatorname{Spec} A$ endowed with the weak-* topology is a compact Hausdorff space.

• Each element $a \in A$ defines a continuous function $\hat{a}: \operatorname{Spec} A \to \mathbb{C}$ as evaluation

Definition 3.5 (Gelfand transform)

The mapping $\hat{\cdot} : A \to \mathcal{C}(\operatorname{Spec} A)$ is called the *Gelfand transform*.

- In general, the Gelfand transform is not injective nor surjective
- The Gelfand transform is short, but not isometry in general
- $\bullet\,$ The Gelfand transform is injective iff A is semisimple

 What and Why
 Gelfand-Mazur Theorem

 Banach Algebra
 Gelfand Transform (1)

 Gelfand Transform
 Gelfand Transform (2)

 C*-Algebra
 Examples

 Functional Calculus
 Spectrum and Gelfand Transform

Examples

 $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X

 What and Why
 Gelfand-Mazur Theorem

 Banach Algebra
 Gelfand Transform (1)

 Gelfand Transform
 Gelfand Transform (2)

 C*-Algebra
 Examples

 Functional Calculus
 Spectrum and Gelfand Transform

- $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X
 - Point evaluations are elements of $\mathrm{Spec}A$

- $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X
 - Point evaluations are elements of $\operatorname{Spec} A$
 - There are more elements in SpecA in general!

- $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X
 - Point evaluations are elements of $\mathrm{Spec}A$
 - There are more elements in SpecA in general!
 - $\operatorname{Spec} A$ is some kind of *compactification* of X

- $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X
 - Point evaluations are elements of $\mathrm{Spec}A$
 - There are more elements in SpecA in general!
 - $\operatorname{Spec} A$ is some kind of *compactification* of X
 - Spec $C_b(X)$ is the Stone-Čech compactification of X
 - Spec $\mathcal{U}_b(X)$ is the Samuel compactification of X
 - Spec Lip(X) is the Lipschitz compactification of X

 What and Why
 Gelfand-Mazur Theorem

 Banach Algebra
 Gelfand Transform

 Gelfand Transform
 Gelfand Transform (2)

 C**-Algebra
 Examples

 Functional Calculus
 Spectrum and Gelfand Transform

Examples

 $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X

- Point evaluations are elements of $\mathrm{Spec}A$
- There are more elements in SpecA in general!
- SpecA is some kind of *compactification* of X
 - Spec $C_b(X)$ is the Stone-Čech compactification of X
 - Spec $\mathcal{U}_b(X)$ is the Samuel compactification of X
 - Spec $\operatorname{Lip}(X)$ is the Lipschitz compactification of X

• Let
$$A = \ell^1(\mathbb{Z})$$

 What and Why
 Gelfand-Mazur Theorem

 Banach Algebra
 Gelfand Transform

 Gelfand Transform
 Gelfand Transform (2)

 C**-Algebra
 Examples

 Functional Calculus
 Spectrum and Gelfand Transform

Examples

 $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X

- Point evaluations are elements of $\mathrm{Spec}A$
- There are more elements in SpecA in general!
- SpecA is some kind of *compactification* of X
 - Spec $C_b(X)$ is the Stone-Čech compactification of X
 - Spec $\mathcal{U}_b(X)$ is the Samuel compactification of X
 - Spec $\operatorname{Lip}(X)$ is the Lipschitz compactification of X

• Let
$$A = \ell^1(\mathbb{Z})$$

• There is a bijection $\operatorname{Spec} A \cong S^1$

 What and Why
 Gelfand-Mazur Theorem

 Banach Algebra
 Gelfand Transform (1)

 Gelfand Transform
 Gelfand Transform (2)

 C*-Algebra
 Examples

 Functional Calculus
 Spectrum and Gelfand Transform

Examples

 $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X

- Point evaluations are elements of $\mathrm{Spec}A$
- There are more elements in SpecA in general!
- SpecA is some kind of *compactification* of X
 - Spec $C_b(X)$ is the Stone-Čech compactification of X
 - Spec $\mathcal{U}_b(X)$ is the Samuel compactification of X
 - Spec Lip(X) is the Lipschitz compactification of X

• Let
$$A = \ell^1(\mathbb{Z})$$

- There is a bijection $\operatorname{Spec} A \cong S^1$
- The above bijection is in fact a homeomorphism

Examples

 $\bullet\,$ Let A be an algebra of some "well-behaved" functions on a set X

- Point evaluations are elements of $\mathrm{Spec}A$
- There are more elements in SpecA in general!
- SpecA is some kind of *compactification* of X
 - Spec $C_b(X)$ is the Stone-Čech compactification of X
 - Spec $\mathcal{U}_b(X)$ is the Samuel compactification of X
 - Spec $\operatorname{Lip}(X)$ is the Lipschitz compactification of X
- Let $A = \ell^1(\mathbb{Z})$
 - There is a bijection $\operatorname{Spec} A \cong S^1$
 - The above bijection is in fact a homeomorphism
 - The Gelfand transform $\,\hat\cdot:\ell^1(\mathbb{Z})\to \mathcal{C}(S^1)$ is the Fourier transform on \mathbb{Z}

Spectrum and Gelfand Transform

Proposition 3.6

An element $a \in A$ is invertible if and only if so is $\hat{a} \in C(\text{Spec}A)$.

Spectrum and Gelfand Transform

Proposition 3.6

An element $a \in A$ is invertible if and only if so is $\hat{a} \in C(\text{Spec}A)$.

Proof.

 (\Rightarrow) Trivial; note that $\hat{1}(\varphi) = \varphi(1) = 1$ for all $\varphi \in \operatorname{Spec} A$.

Spectrum and Gelfand Transform

Proposition 3.6

An element $a \in A$ is invertible if and only if so is $\hat{a} \in C(\text{Spec}A)$.

Proof.

(\Rightarrow) Trivial; note that $\hat{1}(\varphi) = \varphi(1) = 1$ for all $\varphi \in \text{Spec}A$. (\Leftarrow) If $\hat{a}(\varphi) = \varphi(a) \neq 0$ for all $\varphi \in \text{Spec}A$, then a does not belong to any maximal ideal in A, so (a) = A.

Spectrum and Gelfand Transform

Proposition 3.6

An element $a \in A$ is invertible if and only if so is $\hat{a} \in C(\text{Spec}A)$.

Proof.

(\Rightarrow) Trivial; note that $\hat{1}(\varphi) = \varphi(1) = 1$ for all $\varphi \in \text{Spec}A$. (\Leftarrow) If $\hat{a}(\varphi) = \varphi(a) \neq 0$ for all $\varphi \in \text{Spec}A$, then a does not belong to any maximal ideal in A, so (a) = A.

Corollary 3.7

The spectrum $\sigma(a)$ is precisely the range of the function $\hat{a}: \operatorname{Spec} A \to \mathbb{C}$. In particular, $|a|_{\sigma} = \|\hat{a}\|_{\infty}$.

Stone-Weierstrass Theorem (7*-algebra Self-adjoint and Normal Elements *-Homomorphisms Commutative Gelfand-Naimark Theorem

Stone-Weierstrass Theorem

Theorem 4.1 (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space. Then a subalgebra A of C(X) is uniformly dense in C(X) if the following conditions hold:

- **()** A is unital; that is, A contains the constant function 1,
- A is a *-subalgebra; that is, A is closed under the pointwise complex conjugation, and
- **3**A separates points in X.

Stone-Weierstrass Theorem C^{*}-algebra Self-adjoint and Normal Elements *-Homomorphisms Commutative Gelfand-Naimark Theorem

Stone-Weierstrass Theorem

Theorem 4.1 (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space. Then a subalgebra A of C(X) is uniformly dense in C(X) if the following conditions hold:

- **()** A is unital; that is, A contains the constant function 1,
- A is a *-subalgebra; that is, A is closed under the pointwise complex conjugation, and
- **3** A separates points in X.

• The image of the Gelfand transform $\,\hat{\cdot}\,:A\,\rightarrow\,\mathcal{C}(\mathrm{Spec} A)$
What and Why Banach Algebra Gelfand Transform *C*-Algebra* Functional Calculus Stone-Weierstrass Theorem C^{*}-algebra Self-adjoint and Normal Elements *-Homomorphisms Commutative Gelfand-Naimark Theorem

Stone-Weierstrass Theorem

Theorem 4.1 (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space. Then a subalgebra A of C(X) is uniformly dense in C(X) if the following conditions hold:

- **()** A is unital; that is, A contains the constant function 1,
- A is a *-subalgebra; that is, A is closed under the pointwise complex conjugation, and
- **3** A separates points in X.
 - The image of the Gelfand transform $\,\hat{\cdot}\,:A\,\rightarrow\,\mathcal{C}(\mathrm{Spec} A)$
 - is unital, since $\widehat{1}(\varphi)=\varphi(1)=1$ for all $\varphi\in \operatorname{Spec} A$

What and Why Banach Algebra Gelfand Transform *C*-Algebra* Functional Calculus Stone-Weierstrass Theorem C^{*}-algebra Self-adjoint and Normal Elements *-Homomorphisms Commutative Gelfand-Naimark Theorem

Stone-Weierstrass Theorem

Theorem 4.1 (Stone-Weierstrass Theorem)

Let X be a compact Hausdorff space. Then a subalgebra A of C(X) is uniformly dense in C(X) if the following conditions hold:

- **()** A is unital; that is, A contains the constant function 1,
- A is a *-subalgebra; that is, A is closed under the pointwise complex conjugation, and
- **3** A separates points in X.
 - The image of the Gelfand transform $\,\hat{\cdot}\,:A\,\rightarrow\,\mathcal{C}(\mathrm{Spec} A)$
 - $\bullet\,$ is unital, since $\widehat{1}(\varphi)=\varphi(1)=1$ for all $\varphi\in {\rm Spec} A$
 - separates points in $\operatorname{Spec} A$, by definition of $\operatorname{Spec} A$

 What and Why
 Stone-Weierstrass Theorem

 Banach Algebra
 C^* -algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C*-Algebra
 *-Homomorphisms

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

C^* -algebra

Definition 4.2 (C*-algebra)

A Banach algebra A endowed with an involution $*:A \to A$ is called a $C^*\text{-}algebra,$ if:

• is antilinear; that is, $(\alpha x + \beta y)^* = \bar{\alpha} x^* + \bar{\beta} y^*$ for all $\alpha, \beta \in \mathbb{C}$, $x, y \in A$.

$$\ \ \textbf{(}xy)^* = y^*x^* \text{ for all } x,y \in A$$

3
$$||x^*x|| = ||x||^2$$
 for all $x \in A$.

 What and Why
 Stone-Weierstrass Theorem

 Banach Algebra
 C^* -algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C*-Algebra
 *-Homomorphisms

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

C^* -algebra

Definition 4.2 (C^* -algebra)

A Banach algebra A endowed with an involution $*:A \to A$ is called a $C^*\text{-}algebra,$ if:

• is antilinear; that is, $(\alpha x + \beta y)^* = \bar{\alpha} x^* + \bar{\beta} y^*$ for all $\alpha, \beta \in \mathbb{C}$, $x, y \in A$.

$$(xy)^* = y^*x^* \text{ for all } x, y \in A$$

3
$$||x^*x|| = ||x||^2$$
 for all $x \in A$.

 $\bullet\,$ Most of function algebras w/ uniform norm are $C^*\mbox{-algebras}$

 What and Why
 Stone-Weierstrass Theorem

 Banach Algebra
 C^* -algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C^* -Algebra
 *-Homomorphisms

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

C^* -algebra

Definition 4.2 (C*-algebra)

A Banach algebra A endowed with an involution $*:A \to A$ is called a $C^*\text{-}algebra,$ if:

• is antilinear; that is, $(\alpha x + \beta y)^* = \bar{\alpha} x^* + \bar{\beta} y^*$ for all $\alpha, \beta \in \mathbb{C}$, $x, y \in A$.

$$(xy)^* = y^*x^* \text{ for all } x, y \in A$$

3
$$||x^*x|| = ||x||^2$$
 for all $x \in A$.

- $\bullet\,$ Most of function algebras w/ uniform norm are $C^*\mbox{-algebras}$
- $\bullet\,$ The algebra L(E) of all bounded linear operators on a Hilbert space E is a $C^*\mbox{-algebra}$

 What and Why
 Stone-Weierstrass Theorem

 Banach Algebra
 C^* -algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C^* -Algebra
 *-Homomorphisms

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

C^* -algebra

Definition 4.2 (C*-algebra)

A Banach algebra A endowed with an involution $*:A \to A$ is called a $C^*\text{-}algebra,$ if:

• is antilinear; that is, $(\alpha x + \beta y)^* = \bar{\alpha} x^* + \bar{\beta} y^*$ for all $\alpha, \beta \in \mathbb{C}$, $x, y \in A$.

$$(xy)^* = y^*x^* \text{ for all } x, y \in A$$

3
$$||x^*x|| = ||x||^2$$
 for all $x \in A$.

- $\bullet\,$ Most of function algebras w/ uniform norm are $C^*\mbox{-algebras}$
- $\bullet\,$ The algebra L(E) of all bounded linear operators on a Hilbert space E is a $C^*\mbox{-algebra}$
- $\bullet\,$ The algebra $L^1(G)$ nor M(G) are not $C^*\mbox{-algebras}$ in general

What and WhyStone-VBanach Algebra C^* -algGelfand TransformSelf-ad C^* -Algebra*-HomFunctional CalculusCommon

Stone-Weierstrass Theorem C^{*}-algebra Self-adjoint and Normal Elements *-Homomorphisms Commutative Gelfand-Naimark Theorem

Self-adjoint and Normal Elements

Definition 4.3

An element $x \in A$ is said to be *self-adjoint* if $x^* = x$, and is called *normal* if $x^*x = xx^*$.

Stone-Weierstrass Theorem What and Why Banach Algebra C^* -algebra Gelfand Transform C^* -Algebra Functional Calculus

Self-adjoint and Normal Elements Commutative Gelfand-Naimark Theorem

Self-adjoint and Normal Elements

Definition 4.3

An element $x \in A$ is said to be *self-adjoint* if $x^* = x$, and is called *normal* if $x^*x = xx^*$.

Proposition 4.4

If x is normal, then $||x|| = |x|_{\sigma} = ||\hat{x}||_{\infty}$.

 What and Why Banach Algebra
 Stone-Weierstrass Theorem

 Gelfand Transform
 C^* -algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C^* -Algebra
 s-Homomorphisms

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

Self-adjoint and Normal Elements

Definition 4.3

An element $x \in A$ is said to be *self-adjoint* if $x^* = x$, and is called *normal* if $x^*x = xx^*$.

Proposition 4.4

If x is normal, then $||x|| = |x|_{\sigma} = ||\hat{x}||_{\infty}$.

Proof.

When x is self-adjoint, use the spectral radius formula.

 What and Why
 Stone-Weiel

 Banach Algebra
 C*-algebra

 Gelfand Transform
 Self-adjoint

 C*-Algebra
 *-Homomor

 Functional Calculus
 Commutative

Stone-Weierstrass Theorem C^{*}-algebra Self-adjoint and Normal Elements *-Homomorphisms Commutative Gelfand-Naimark Theorem

Self-adjoint and Normal Elements

Definition 4.3

An element $x \in A$ is said to be *self-adjoint* if $x^* = x$, and is called *normal* if $x^*x = xx^*$.

Proposition 4.4

If x is normal, then
$$||x|| = |x|_{\sigma} = ||\hat{x}||_{\infty}$$
.

Proof.

When x is self-adjoint, use the spectral radius formula. For the general case,

$$||x||^2 = ||x^*x|| = |x^*x|_{\sigma} \stackrel{(a)}{\leq} |x|_{\sigma}^2 \leq ||x||^2$$

where (a) follows from the spectral radius formula.

*-Homomorphisms

Definition 4.5

A *-homomorphism between C^* -algebras A, B is a homomorphism

 $\varphi: A \rightarrow B$ preserving the involution.

*-Homomorphisms

Definition 4.5

A *-homomorphism between $C^*\text{-}{\rm algebras}\;A,B$ is a homomorphism $\varphi:A\,\to\,B$ preserving the involution.

Proposition 4.6

Every $\varphi \in \operatorname{Spec} A$ is a *-homomorphism, if A is a C*-algebra.

 What and Why Banach Algebra
 Stone-Weierstrass Theorem

 Gelfand Transform
 Gelf-adjoint and Normal Elements

 G*-Algebra
 self-adjoint and Normal Elements

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

*-Homomorphisms

Definition 4.5

A *-homomorphism between $C^*\text{-algebras}\ A,B$ is a homomorphism $\varphi:A\to B$ preserving the involution.

Proposition 4.6

Every $\varphi \in \operatorname{Spec} A$ is a *-homomorphism, if A is a C*-algebra.

Proof.

Suffices to show that self-adjoint elements become real numbers.

 What and Why Banach Algebra
 Stone-Weierstrass Theorem

 Gelfand Transform
 Gelf-adjoint and Normal Elements

 G*-Algebra
 self-adjoint and Normal Elements

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

*-Homomorphisms

Definition 4.5

A *-homomorphism between $C^*\text{-algebras}\ A,B$ is a homomorphism $\varphi:A\to B$ preserving the involution.

Proposition 4.6

Every $\varphi \in \operatorname{Spec} A$ is a *-homomorphism, if A is a C*-algebra.

Proof.

Suffices to show that self-adjoint elements become real numbers. (1) Estimate using exp.

 What and Why Banach Algebra
 Stone-Weierstrass Theorem

 Gelfand Transform
 Gelf-adjoint and Normal Elements

 G*-Algebra
 self-adjoint and Normal Elements

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

*-Homomorphisms

Definition 4.5

A *-homomorphism between $C^*\text{-algebras}\ A,B$ is a homomorphism $\varphi:A\to B$ preserving the involution.

Proposition 4.6

Every $\varphi \in \operatorname{Spec} A$ is a *-homomorphism, if A is a C*-algebra.

Proof.

Suffices to show that self-adjoint elements become real numbers.

- (1) Estimate using exp.
- (2) Estimate using square.

Commutative Gelfand-Naimark Theorem

Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C^* -algebra A, the Gelfand transform

 $\hat{\cdot} : A \rightarrow \mathcal{C}(\operatorname{Spec} A)$ is an isometric *-isomorphism.

What and Why
Banach AlgebraStone-Weierstrass Theorem
 C^* -algebraGelfand Transform
 C^* -AlgebraSelf-adjoint and Normal Elements
*-HomomorphismsFunctional CalculusCommutative Gelfand-Naimark Theorem

Commutative Gelfand-Naimark Theorem

Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C^* -algebra A, the Gelfand transform

 $\hat{\cdot} : A \to \mathcal{C}(\operatorname{Spec} A)$ is an isometric *-isomorphism.

Proof.

Isometry: every element is normal

 What and Why
 Stone-Weierstrass Theorem

 Banach Algebra
 C*-algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C*-Algebra
 +-Homomorphisms

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

Commutative Gelfand-Naimark Theorem

Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C^* -algebra A, the Gelfand transform

 $\hat{\cdot} : A \rightarrow \mathcal{C}(\operatorname{Spec} A)$ is an isometric *-isomorphism.

Proof.

Isometry: every element is normal Dense: Stone-Weierstrass theorem

 What and Why
 Stone-Weierstrass Theorem

 Banach Algebra
 C*-algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C*-Algebra
 +-Homomorphisms

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

Commutative Gelfand-Naimark Theorem

Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C^* -algebra A, the Gelfand transform

 $\hat{\cdot} : A \to \mathcal{C}(\operatorname{Spec} A)$ is an isometric *-isomorphism.

Proof.

Isometry: every element is normal Dense: Stone-Weierstrass theorem Surjectivity follows from the completeness.
 What and Why
 Stone-Weierstrass Theorem

 Banach Algebra
 C*-algebra

 Gelfand Transform
 Self-adjoint and Normal Elements

 C*-Algebra
 self-adjoint and Normal Elements

 Functional Calculus
 Commutative Gelfand-Naimark Theorem

Commutative Gelfand-Naimark Theorem

Corollary 4.7 (Gelfand-Naimark)

For a commutative unital C^* -algebra A, the Gelfand transform

 $\hat{\cdot} : A \to \mathcal{C}(\operatorname{Spec} A)$ is an isometric *-isomorphism.

Proof.

Isometry: every element is normal Dense: Stone-Weierstrass theorem Surjectivity follows from the completeness.

- $\operatorname{Spec}(\,\cdot\,)$ and $\mathcal{C}(\,\cdot\,)$ are adjoint pairs
 - (category of commutative unital C*-algebras)≅ (category of compact Hausdorff spaces)

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

 $\bullet~$ Suppose A is a $C^*\mbox{-algebra}$ and $a\in A$

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Suppose A is a C^* -algebra and $a \in A$
- The smallest closed unital *-subalgebra of A containing a, say B, is itself a C^* -algebra

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Suppose A is a C^* -algebra and $a \in A$
- The smallest closed unital *-subalgebra of A containing a, say B, is itself a C^* -algebra
- (B is commutative) \Leftrightarrow (a is normal)

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Suppose A is a $C^*\mbox{-algebra}$ and $a\in A$
- The smallest closed unital *-subalgebra of A containing a, say B, is itself a C^* -algebra
- (B is commutative) \Leftrightarrow (a is normal)

Theorem 5.1

When a is normal, there is a natural homeomorphism $\operatorname{Spec} B \cong \sigma(a)$

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Suppose A is a $C^*\mbox{-algebra}$ and $a\in A$
- The smallest closed unital *-subalgebra of A containing a, say B, is itself a C^* -algebra
- (B is commutative) \Leftrightarrow (a is normal)

Theorem 5.1

When a is normal, there is a natural homeomorphism $\operatorname{Spec} B \cong \sigma(a)$

Proof.

Define $\Phi : \operatorname{Spec} B \to \sigma(a)$ as $\Phi : \varphi \mapsto \hat{a}(\varphi)$.

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Suppose A is a $C^*\mbox{-algebra}$ and $a\in A$
- The smallest closed unital *-subalgebra of A containing a, say B, is itself a C^* -algebra
- (B is commutative) \Leftrightarrow (a is normal)

Theorem 5.1

When a is normal, there is a natural homeomorphism $\operatorname{Spec} B \cong \sigma(a)$

Proof.

 $\begin{array}{l} \text{Define } \Phi: \operatorname{Spec} B \to \sigma(a) \text{ as } \Phi: \varphi \mapsto \hat{a}(\varphi). \\ \text{Injective: if } \varphi(a) = \psi(a), \text{ then } \varphi = \psi. \end{array}$

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Suppose A is a $C^*\mbox{-algebra}$ and $a\in A$
- The smallest closed unital *-subalgebra of A containing a, say B, is itself a C^* -algebra
- (B is commutative) \Leftrightarrow (a is normal)

Theorem 5.1

When a is normal, there is a natural homeomorphism $\operatorname{Spec} B \cong \sigma(a)$

Proof.

Define $\Phi : \operatorname{Spec} B \to \sigma(a)$ as $\Phi : \varphi \mapsto \hat{a}(\varphi)$. Injective: if $\varphi(a) = \psi(a)$, then $\varphi = \psi$. Surjective: the spectrum taken inside B is exactly $\sigma(a)$. (Nontrivial)

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

Corollary 5.2 (Functional calculus theorem)

When a is normal, there is a natural isometric *-isomorphism $B \cong C(\sigma(a))$, given by $a \mapsto (\lambda \mapsto \lambda)$. Under this isomorphism, we have $\sigma(f(a)) = f[\sigma(a)]$ for each $f \in C(\sigma(a))$.

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

Corollary 5.2 (Functional calculus theorem)

When a is normal, there is a natural isometric *-isomorphism $B \cong C(\sigma(a))$, given by $a \mapsto (\lambda \mapsto \lambda)$. Under this isomorphism, we have $\sigma(f(a)) = f[\sigma(a)]$ for each $f \in C(\sigma(a))$.

• The polynomial $p(\lambda) = c_n \lambda^n + \cdots + c_0$ corresponds to the element $p(a) = c_n a^n + \cdots + c_0$ in A

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

Corollary 5.2 (Functional calculus theorem)

When a is normal, there is a natural isometric *-isomorphism $B \cong C(\sigma(a))$, given by $a \mapsto (\lambda \mapsto \lambda)$. Under this isomorphism, we have $\sigma(f(a)) = f[\sigma(a)]$ for each $f \in C(\sigma(a))$.

- The polynomial $p(\lambda) = c_n \lambda^n + \cdots + c_0$ corresponds to the element $p(a) = c_n a^n + \cdots + c_0$ in A
- By Stone-Weierstrass theorem, $\mathcal{C}(\sigma(a))$ is the set of functions on $\sigma(a)$ that can be uniformly approximated by polynomials in λ and $\overline{\lambda}$.

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

• E: Hilbert space, T: bounded normal operator on E

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- E: Hilbert space, T: bounded normal operator on E
- B: the smallest closed unital *-subalgebra of L(E) containing T

- E: Hilbert space, T: bounded normal operator on E
- B: the smallest closed unital *-subalgebra of L(E) containing T
- For given $u, v \in E$, $A \mapsto \langle u, Av \rangle$ is a continuous linear functional on $B \cong \mathcal{C}(\sigma(T))$

- E: Hilbert space, T: bounded normal operator on E
- B: the smallest closed unital *-subalgebra of L(E) containing T
- For given $u, v \in E$, $A \mapsto \langle u, Av \rangle$ is a continuous linear functional on $B \cong \mathcal{C}(\sigma(T))$
- By Riesz representation theorem, such a functional can be represented as a complex regular Borel measure $\rho_{u,v}$ on $\sigma(T)$

- E: Hilbert space, T: bounded normal operator on E
- B: the smallest closed unital *-subalgebra of L(E) containing T
- For given $u, v \in E$, $A \mapsto \langle u, Av \rangle$ is a continuous linear functional on $B \cong \mathcal{C}(\sigma(T))$
- By Riesz representation theorem, such a functional can be represented as a complex regular Borel measure $\rho_{u,v}$ on $\sigma(T)$
- Define $\rho:\mathcal{B}(\sigma(T))\,\to\,L(E)$ as $\langle u,\rho(G)v\rangle:=\rho_{u,v}(G),$ then

$$\langle u, f(T)v \rangle = \int_{\sigma(T)} f(\lambda) \langle u, d\rho(\lambda)v \rangle$$

for each $f \in \mathcal{C}(\sigma(T))$

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

• Claim: each $\rho(G)$ is self-adjoint
What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Claim: each $\rho(G)$ is self-adjoint
- If f: nonnegative, then $\langle u, f(T)u \rangle = \left\|\sqrt{f}(T)u\right\|^2 \ge 0$, so $\rho_{u,u}$ is a positive measure

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Claim: each $\rho(G)$ is self-adjoint
- If f: nonnegative, then $\langle u, f(T)u \rangle = \|\sqrt{f}(T)u\|^2 \ge 0$, so $\rho_{u,u}$ is a positive measure
- Then the claim follows from polarization identity

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Claim: each $\rho(G)$ is self-adjoint
- If f: nonnegative, then $\langle u,f(T)u\rangle=\big\|\sqrt{f}(T)u\big\|^2\geq 0,$ so $\rho_{u,u}$ is a positive measure
- Then the claim follows from polarization identity
- Claim: each $\rho(K)$, K: compact, is a projection

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Claim: each $\rho(G)$ is self-adjoint
- If f: nonnegative, then $\langle u, f(T)u \rangle = \|\sqrt{f}(T)u\|^2 \ge 0$, so $\rho_{u,u}$ is a positive measure
- Then the claim follows from polarization identity
- Claim: each $\rho(K)$, K: compact, is a projection
- By regularity,

$$\rho_{u,v}(K) = \lim_{f \downarrow \mathbb{1}_K} \int_{\sigma(A)} f(\lambda) d\rho_{u,v}(\lambda) = \lim_{f \downarrow \mathbb{1}_K} \langle u, f(T)v \rangle,$$

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

- Claim: each $\rho(G)$ is self-adjoint
- If f: nonnegative, then $\langle u, f(T)u \rangle = \|\sqrt{f}(T)u\|^2 \ge 0$, so $\rho_{u,u}$ is a positive measure
- Then the claim follows from polarization identity
- Claim: each $\rho(K)$, K: compact, is a projection
- By regularity,

$$\rho_{u,v}(K) = \lim_{f \downarrow \mathbb{1}_K} \int_{\sigma(A)} f(\lambda) d\rho_{u,v}(\lambda) = \lim_{f \downarrow \mathbb{1}_K} \langle u, f(T)v \rangle \,,$$

$$\left\langle u, \rho(K)^2 v \right\rangle = \lim_{f \downarrow \mathbb{1}_K} \left\langle u, \rho(K) f(T) v \right\rangle = \lim_{f \downarrow \mathbb{1}_K} \lim_{g \downarrow \mathbb{1}_K} \left\langle u, g(T) f(T) v \right\rangle$$

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

• For given
$$f$$
, $(gf)_{g \downarrow \mathbb{1}_K}$ is a subnet of $(g)_{g \downarrow \mathbb{1}_K}$, so
$$\lim_{f \downarrow \mathbb{1}_K} \lim_{g \downarrow \mathbb{1}_K} \langle u, g(T)f(T)v \rangle = \lim_{f \downarrow \mathbb{1}_K} \lim_{g \downarrow \mathbb{1}_K} \langle u, g(T)v \rangle = \langle u, \rho(K)v \rangle$$

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

• For given
$$f$$
, $(gf)_{g\downarrow \mathbb{1}_K}$ is a subnet of $(g)_{g\downarrow \mathbb{1}_K}$, so
$$\lim_{f\downarrow \mathbb{1}_K} \lim_{g\downarrow \mathbb{1}_K} \langle u, g(T)f(T)v \rangle = \lim_{f\downarrow \mathbb{1}_K} \lim_{g\downarrow \mathbb{1}_K} \langle u, g(T)v \rangle = \langle u, \rho(K)v \rangle$$

• Using a similar argument \rightarrow each $\rho(G)$ is a projection

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

• For given
$$f$$
, $(gf)_{g\downarrow \mathbb{1}_K}$ is a subnet of $(g)_{g\downarrow \mathbb{1}_K}$, so
$$\lim_{f\downarrow \mathbb{1}_K} \lim_{g\downarrow \mathbb{1}_K} \langle u, g(T)f(T)v \rangle = \lim_{f\downarrow \mathbb{1}_K} \lim_{g\downarrow \mathbb{1}_K} \langle u, g(T)v \rangle = \langle u, \rho(K)v \rangle$$

- Using a similar argument \rightarrow each $\rho(G)$ is a projection
- Hence, ρ is a projection-valued measure

What and Why	Functional Calculus (1)
Banach Algebra	Functional Calculus (2)
Gelfand Transform	Application: Spectral Theorem (1)
C^* -Algebra	Application: Spectral Theorem (2)
Functional Calculus	Application: Spectral Theorem (3)

• For given
$$f$$
, $(gf)_{g\downarrow \mathbb{1}_K}$ is a subnet of $(g)_{g\downarrow \mathbb{1}_K}$, so
$$\lim_{f\downarrow \mathbb{1}_K} \lim_{g\downarrow \mathbb{1}_K} \langle u, g(T)f(T)v \rangle = \lim_{f\downarrow \mathbb{1}_K} \lim_{g\downarrow \mathbb{1}_K} \langle u, g(T)v \rangle = \langle u, \rho(K)v \rangle$$

- Using a similar argument \rightarrow each $\rho(G)$ is a projection
- Hence, ρ is a projection-valued measure

Theorem 5.3 (Spectral theorem for bounded normal operators)

If T is a bounded normal operator on a Hilbert space E, then there uniquely exists a projection-valued regular Borel measure ρ_T on $\sigma(T)$ such that

$$\langle u, f(T)v \rangle = \int_{\sigma(T)} f(\lambda) \langle u, d\rho_T(\lambda)v \rangle$$

for all $f \in \mathcal{C}(\sigma(T))$ and $u, v \in E$.