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maximize (z,z)

subject to  {(a;,z) =b;, i=1, -+ ,m, (CP)
zel
@ ai, - ,am,z€RY by, oo by €R

@ C'is a closed convex cone in R?
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maximize (z,z)

subject to  {(a;,z) =b;, i=1, -+ ,m, (CP)
zel
@ ai, - ,am,z€RY by, oo by €R

@ C'is a closed convex cone in R?

Theorem 1

When aq, --- ,am,2z and by, --- , b, are iid standard normal,

m—1

Pr [(CP) is infeasible] = Z V;(C),
=0
d
Pr [(CP) is unbounded]| = Z V;i(O).

Furthermore, for a conic Borel set M C R,

Pr [sol(CP) € M| = ®,,(C, M).
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@ &;(C, -) is called the jth (conic) curvature measure of C

@ V;(C) = ®;(C,RY) is called the jth (conic) intrinsic volume of C
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@ &;(C, -) is called the jth (conic) curvature measure of C
@ V;(C) = ®;(C,RY) is called the jth (conic) intrinsic volume of C

@ In particular, if Ay, --- , A, Z ~ GOE(d) or GUE(d) or GSE(d),
by, -+ , by, areiid standard normal from R or C or H, then for
semidefinite program

maximize tr(Z7X)

subject to  tr(AIX)=b;, i=1, --- ,m, (SDP)

K2

X >0

we can compute
Pr [(SDP) is infeasible], Pr[(SDP) is unbounded],
and also
Pr [rank(sol(CP)) = r|

for each 0 < r < d, by obtaining an explicit formula for the intrinsic
volumes and the curvature measures of the positive-semidefinite cone
evaluated at the set of rank r» matrices

4/36



2 3 4 5 6 7 8 9
V2 1 V2
Y| s 0 0 0 0 0 0
1 1 1
i P T 0 0 0 0
4 8 | 1L | 4 _ 1] 19 3 2 | Ly Ly LT 7T
61 157 | 107 | 57 ~ 16 | 120x 32 57 |16 T &x | 5x | 61 ~ 24x

Table 1: The values of ®;(/3,3,1).

Vo Vi Va Vy Vs 6 Vz Vs
Ca1 0 0 0 0 0
Cio| % 0 0 0 0 0
Cop | 4 - 0 0 0 0
1 2 1 1_ 2
Cia | 7 i s 173 0 0
1 V2 _ 1| L_ 3
Ciz| 1 T 1| 172 0 0
1 1 1
Cos 27 In
147 ju1 8 | 1§ 4 1 19 13 A IS S U B
C4~3 8 1207 | 64 157 | 407w | 157 16 1207 1207 + 64 | 307 + 16
Table 2: Intrinsic volumes of Cz,, for n = 1,2,3 (the missing entries for Co3 and Cy3 are
obtained via V;(Cs.) = Vi, . —i(Cs.n))-
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o Intuitive meaning of V;(C): how big are the j-dimensional “faces”
of C7

e &;(C, M): some sort of “localization” of V;(C) into M
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o Intuitive meaning of V;(C): how big are the j-dimensional “faces”
of C7

e &;(C, M): some sort of “localization” of V;(C) into M

@ Let us look at Euclidean intrinsic volumes first!
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@ Regular n-gon inscribed in the circle of radius r in 2D

o Number of vertices: n
o Circumference: 2nr sin%

2 .
o Area: “5-sin 2n
n
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@ Regular n-gon inscribed in the circle of radius r in 2D
o Number of vertices: n
o Circumference: 2nrsin =
nr? 27

o Area: "-sin ¢

o Consider the area of the e-neighborhood

o Green: 7e?

o Blue: 2nresin%

2m
n

2 .
o Red: “3-sin
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@ Regular n-gon inscribed in the circle of radius r in 2D
o Number of vertices: n
o Circumference: 2nrsin =

o Area: % sin 2%

@ Normalize by the volume of (d — j)-dimensional ball:
o Vo =me?/me? =1
o V) = (Zn’resin Z)/2e =nrsin X

° ng( o sm%)/l— - st—”
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@ Regular n-gon inscribed in the circle of radius r in 2D

o Number of vertices: n

o Circumference: 2nrsin 7
27

n

2,
o Area: "3 sin

@ The area of the e-neighborhood
= Vo vola(B2) + Vy voly (BL) + Vi volg(B?)
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In general, for a compact convex set K in R, there uniquely
exists Vo(K), --- ,V4(K) > 0, called the intrinsic volumes of

K, such that
d .
volg(K + BY) = > Vj(K) voly_;(BI )
7=0

The above equation is called the Steiner’s formula
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@ In general, for a compact convex set K in R<, there uniquely
exists Vo(K), --- ,V4(K) > 0, called the intrinsic volumes of
K, such that

d
volg(K + BY) = > Vj(K) voly_;(BI )
7=0

@ The above equation is called the Steiner’s formula

@ V; is continuous with respect to the Hausdorff metric
o Eg, volo(B2+B?)=n(r+e?=1-7n+7nr-2c+7r?-1
o Vo(B2)=1=lim, 001

° Vl(BQ) =7r = liMmp— oo NT sin x
2T

° VQ(B Y =7r? =limy oo 2
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@ For a closed convex cone C' C R, we can define the conic
intrinsic volumes 1,(C), --- | V4(C) of C using a spherical
analogue of the Steiner's formula
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@ For a closed convex cone C' C R, we can define the conic
intrinsic volumes 1,(C), --- | V4(C) of C using a spherical
analogue of the Steiner's formula

@ For a polyhedral convex cone (', one can show

V:(C) = Pr IIo(x) € F
G UL

where Fj is the set of j-dimensional (open) faces of C
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@ When C'is a 2 dimensional cone with the central angle 6,
e V5(C)

Ry
o W(C) =2

13/36



@ More generally, for a closed convex cone C' C R4, we can define
the conic curvature measures ((C, -), --- ,94(C, -) of C
using a generalized Steiner's formula

@ For a polyhedral convex cone (', one can show

%(C, M) = Z mNj\l;)(I(; L) [Hc(x) S FﬂM]
FE]:]' ’

where Fj is the set of j-dimensional (open) faces of C

@ When C'is a 2-dimensional cone,

o $y(C, M) = (central angle of C N M) /27

o ®(C, M) = (# of boundary edges of C' contained in M)/2
{(central angle of C)/2r if0€ M

®o(C, M) =
° @M =1, if0¢ M
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@ When C is a 2-dimensional cone,
° <I>2 (C, M) = (central angle of C N M)/2m

O, (C, M) = (# of boundary edges of C' contained in M)/2
(central angle of C)/2r if 0 € M
o (C, M) = .
0 ito¢ M
\ 7
\ /
\ /
v C
\ /
\ /
\ /
\ /
V2(C)
b /
y
V1(C) V1(C)
i - Vo (C) -
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Let v,w € S, (v,w) = 0, and L := span {v,w}. Then for a closed
convex cone C' C RY, we have
sup {(v,z) : z € C, (w,z) = 1}
=sup {(v,z) : z € I (C), (w,z) =1},
Argmax {(v,z) : x € C, (w,x) = 1}
= C NI ! [Argmax {(v,z) : € II1(O), (w,z) =1}].
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Let v,w € S, (v,w) = 0, and L := span {v,w}. Then for a closed
convex cone C' C RY, we have

sup {(v,z) : z € C, (w,z) = 1}
=sup {(v,x) : x € U (C), (w,z) =1},
Argmax {(v,z) : x € C, (w,x) = 1}
= O N} [Argmax {(v,x) : © € [ (C), (w,z) = 1}].

Proof.

90—y +mi = (v,z) = (v,xp), (w,x) = (w,x), SO

sup {(v,z) : x € C, (w,z) =1}
= Sup{<va$L> HEAANS HL(C)7 <’LU,IL> = 1}7

and similarly the second claim follows. Ol
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maximize (z,z)
subject to  {(a;,z) =b;, i=1, -+ ,m, (CP)
zel
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maximize (z,z)
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o W:={zeR% (a;,) =0, i=1, --- ,m}
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maximize (z,z)

subject to  {(a;,z) =b;, i=1, -+ ,m, (CP)
zel
o W:={zeR% (a;,) =0, i=1, --- ,m}
o W ={z eR%: (a;,2) =b;, i=1, -+ ,m}

@ w: unique unit vector s.t. w L W and W,og = W + hw for some h > 0
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maximize (z,z)

subject to  {(a;,z) =b;, i=1, -+ ,m, (CP)
zel
W= {zeR%: (a;,2) =0, i=1, --- ,m}
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maximize (z,z)

subject to  {(a;,z) =b;, i=1, -+ ,m, (CP)
zel
W = {xERd: (aj,z) =0, i=1, --- ,m}
Wag = {2z € R?: (aj,x) =b;, i=1, -~ ,m}
w: unique unit vector s.t. w L W and W,og = W + hw for some h > 0
W o= span Wg
v = Iy (2)
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maximize (z,z)

subject to  {(a;,z) =b;, i=1, -+ ,m, (CP)
zel
W= {zeR%: (a;,2) =0, i=1, --- ,m}
Waff = {ﬂ?ERdi <ai71‘>:bi7 7,:17 ’m}

w: unique unit vector s.t. w L W and W,og = W + hw for some h > 0
W o= span Wg
v = Iy (2)

unit sphere
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o Write z € W as & = hy for some y € W + w, then
o (z,z) = (v,x) + (2 —v,z) = h{v,y) + h(z —v,w)
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o Write z € W as & = hy for some y € W + w, then
o (z,z) = (v,x) + (2 —v,z) = h{v,y) + h(z —v,w)
@ Thus, (CP) is equivalent to the problem

maximize (v,y)
subject to  (w,y) =1
yeCNW
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o Write z € W as & = hy for some y € W + w, then
o (z,z) = (v,x) + (2 —v,z) = h{v,y) + h(z —v,w)
@ Thus, (CP) is equivalent to the problem

maximize (v,y)
subject to  (w,y) =1
yeCNW

which can be, by the lemma, further reduced to

maximize (v, y)
subject to  (w,y) =1 (CP2D)
y el (Cn W)
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@ Reformulate the problem:
@ Uniformly randomly generate a subspace T of codimension m — 1
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@ Reformulate the problem:

@ Uniformly randomly generate a subspace T of codimension m—1
@ Uniformly randomly generate a 2-dimensional subspace L of W
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@ Reformulate the problem:

@ Uniformly randomly generate a subspace T of codimension m—1
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© Uniformly randomly generate an orthonormal frame (v, w) from L
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@ Reformulate the problem:

@ Uniformly randomly generate a subspace T of codimension m—1
@ Uniformly randomly generate a 2-dimensional subspace L of W
© Uniformly randomly generate an orthonormal frame (v, w) from L

@ Given these, we are looking for the probabilities that the following
optimization problem is (1) infeasible, (2) unbounded, (3) has a
unique solution and that solution is in Il (M N W) some conic

Borel set M:
maximize (v, y)

subject to  (w,y) =1 (CP2D)
yell (Cn W)
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Let C C R? be a closed convex cone. For a uniformly random
[v w] € O(2), define

F={zeC: (wz)=1},
then we have

Pr [F = (] = Vi(
Pr [sup {(v,z) : € F'} = 00| = V3(
Pr [argmax {(v,z) : z € F} € M| = ®1(C, M)

),
),

for any conic Borel set M C R2.
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Qi

)

o Pr[F =] = Vi
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o Prlsup{(v,z): z € F} =o0] =V,(C)
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o Prlargmax {(v,z):z € F} € M| =®(C,M)

Left: argmax is on the left boundary edge
Right: argmax is on the right boundary edge

If M contains no boundary, we get 0 = ®;(C, M)

If M contains both boundaries, we get 3 = V;(C) = ®1(C, M)
If M contains only one of the boundaries, we get

1= 3%(0)=.(C, M)
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Proof of Theorem 1.

By the previous discussions,

Pr [(CP) is infeasible] = Pr Pr [(CP2D) is infeasible]

ai, =t ,Am,Z2, wW,L YW
by, = bm

=By, [WL(C N W)
and

Pr [(CP) is unbounded] = Pr Pr [(CP2D) is unbounded]
ai, ot ,Qm,2, W,L VW
blv 7b,"L

=By, [ cnw)),

and similarly,

ag, o ,Am,2,
b1, = bm

Pr [sol(CP) € M] = Pr Pr [sol(CP2D) € I (M N W)]
W,L v»w

=Ey L [‘I’l(nL(CﬂW),HL(MﬁW))] .
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)j(COI/V»MmW)}:(I)m+j(CvM)7 forj=1, -,
E[VQ(CQW)}ZVQ(C)-I-Vl(C)-F +Vm(C).

d—m,
@ (Random projection formula)

E[®;(w (C), Iw (M))] = ®;(C, M), forj=0, -+ ,d—m—1
E [Va—m IIw (C))] = Va—m(C) + Va—m+1(C) + -+ + Va(C).
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)
E[®;(Iw (C), Iw (M))] = ®;(C, M), forj=0, --- ,d—m—1

E [Viem@w (C)] = Va—m(C) + Va—m+1(C) + -+ + Va(CO).

Proof of Theorem 1, cont’d.

Pr  [(CP) is infeasible] = By, , [VO(H L(Cn VV))]
ag, = ,Am,Z2, )

by, = bm
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)

E[®;(w (C), Iw (M))] = ®;(C, M), forj=0, -+ ,d—m—1
E [Va—m IIw (C))] = Va—m(C) + Va—m+1(C) + -+ + Va(C).

Proof of Theorem 1, cont’d.

Pr  [(CP) is infeasible] = By, , [VO(H L(Cn VV))]
ag, = ,Am,Z2, )

by, = bm

= ]EW |:V()(C n W)]
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)

E[®;(w (C), Iw (M))] = ®;(C, M), forj=0, -+ ,d—m—1
E [Va—m IIw (C))] = Va—m(C) + Va—m+1(C) + -+ + Va(C).

Proof of Theorem 1, cont’d.

Pr  [(CP) is infeasible] = By, , [VO(H L(Cn VV))]
ay, = ,Am,Z2, )

by, = \bm

=Ey [Vo(CﬂVV)] =W(C)+Vi(C) + -+ + Vin—1(0).
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)
E[®;(Iw (C), Iw (M))] = ®;(C, M), forj=0, --- ,d—m—1

E [Viem@w (C)] = Va—m(C) + Va—m+1(C) + -+ + Va(CO).

Proof of Theorem 1, cont’d.

Pr  [(CP) is unbounded] = Eyj, , [VQ(H L(Cn VV))]

ai, - ,am,2,

by, =+ \bm
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)

E[®;(w (C), Iw (M))] = ®;(C, M), forj=0, -+ ,d—m—1
E [Va—m IIw (C))] = Va—m(C) + Va—m+1(C) + -+ + Va(C).

Proof of Theorem 1, cont’d.

Pr  [(CP) is unbounded] = Ey;, | [VQ(H L(Cn VV))]
ay, - ,am,z, )

b1, -+ \bm

=Ey [Vz(CﬂVV) +V3(CnW)+ - + Vd_m+1(CmW)]
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of R%. Then,

@ (Random intersection formula)

E[®,;(CNW,MNW)] = ®,,1,;(C,M), forj=1, -

7d7 m,
E[Vo(CNW)] = Vo(C) + Vi(C) + -+ + Vin(C).

@ (Random projection formula)

E[@;(Iw (C), Iw (M))] = ©;(C, M), forj=0, --- ,d—m—1
E [Viem([Iw (C))] = Va—m(C) + Va—m+1(C) + -+ + Va(CO).

Proof of Theorem 1, cont’d.

Pr [(CP) is unbounded] = E;, [Vg(HL(C N W))]
al, =t ,am;2, ’

b1, - bm
=Ky [VQ(COVV)JrVg(CﬂVV)Jr +vd,m+1(0mv”(/)]
= Vin41(C) + Vip2(C) + -+ + V4(C).
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)
E[®;(Iw (C), Iw (M))] = ®;(C, M), forj=0, --- ,d—m—1

E [Viem@w (C)] = Va—m(C) + Va—m+1(C) + -+ + Va(CO).

Proof of Theorem 1, cont’d.

W P [l(CP) € M]=Ey [<1>1(HL(C AW), L (M N VV))]

b1, =+ ,bm
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)

E[®;(w (C), Iw (M))] = ®;(C, M), forj=0, -+ ,d—m—1
E [Va—m IIw (C))] = Va—m(C) + Va—m+1(C) + -+ + Va(C).

Proof of Theorem 1, cont’d.

W P [l(CP) € M]=Ey [<1>1(HL(C AW), L (M N W))]

b1, =+ ,bm

=Ey [<I>1(CHW,MOW)]
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Theorem 4 (Kinematic formula)

Let C C R? be a closed convex cone, and W C R% be a uniformly random subspace of
codimension m < d — 1, and M be a conic Borel subset of Re. Then,

@ (Random intersection formula)

]E[(I)J(COI/V’MQW)}:(DM+J(07M)7 forj=1, --- ,d—m,
EWV(CNW)] =VW(C)+Vi(C)+ - + Vn(C).
@ (Random projection formula)

E[®;(w (C), Iw (M))] = ®;(C, M), forj=0, -+ ,d—m—1
E [Va—m IIw (C))] = Va—m(C) + Va—m+1(C) + -+ + Va(C).

Proof of Theorem 1, cont’d.

W P [l(CP) € M]=Ey [<1>1(HL(C AW), L (M N W))]

b1, =+ ,bm

=Ey [@l(CmW,Mm W)] = &, (C, M).

35/36



Any questions?



