Conic Intrinsic Volumes and Conic Linear Programming

Junekey Jeon

UCSD

- (2015, *D. Amelunxen and P. Bürgisser*) Intrinsic volumes of symmetric cones and applications in convex programming
- (2018 arXiv version) Intrinsic volumes of symmetric cones

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

•
$$a_1, \cdots, a_m, z \in \mathbb{R}^d$$
, $b_1, \cdots, b_m \in \mathbb{R}$

 $\bullet \ C$ is a closed convex cone in \mathbb{R}^d

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

•
$$a_1, \ \cdots, a_m, z \in \mathbb{R}^d$$
, $b_1, \ \cdots, b_m \in \mathbb{R}$

• C is a closed convex cone in \mathbb{R}^d

Theorem 1

When a_1, \dots, a_m, z and b_1, \dots, b_m are iid standard normal,

$$\Pr\left[(CP) \text{ is infeasible}\right] = \sum_{j=0}^{m-1} V_j(C),$$

$$\Pr\left[(CP) \text{ is unbounded}\right] = \sum_{j=m+1}^d V_j(C).$$

Furthermore, for a conic Borel set $M \subseteq \mathbb{R}^d$,

 $\Pr\left[\operatorname{sol}(\operatorname{CP}) \in M\right] = \Phi_m(C, M).$

- $\Phi_j(C, \cdot)$ is called the *j*th (conic) curvature measure of C
- $V_j(C) \coloneqq \Phi_j(C, \mathbb{R}^d)$ is called the *j*th (conic) intrinsic volume of C

- $\Phi_j(C, \cdot)$ is called the *j*th (conic) curvature measure of C
- $V_j(C) \coloneqq \Phi_j(C, \mathbb{R}^d)$ is called the *j*th (conic) intrinsic volume of C
- In particular, if A₁, · · · , A_m, Z ~ GOE(d) or GUE(d) or GSE(d), b₁, · · · , b_m are iid standard normal from ℝ or ℂ or ℍ, then for semidefinite program

maximize
$$\operatorname{tr}(Z^{\dagger}X)$$

subject to $\operatorname{tr}(A_{i}^{\dagger}X) = b_{i}, \quad i = 1, \cdots, m,$ (SDP)
 $X \succeq 0$

we can compute

```
\Pr[(SDP) \text{ is infeasible}], \Pr[(SDP) \text{ is unbounded}],
```

and also

$$\Pr\left[\operatorname{rank}(\operatorname{sol}(\operatorname{CP})) = r\right]$$

for each $0 \le r \le d$, by obtaining an explicit formula for the intrinsic volumes and the curvature measures of the positive-semidefinite cone evaluated at the set of rank r matrices

$\overbrace{\beta}^{j}$	1	2	3	4	5	6	7	8	9
1	$\frac{\sqrt{2}}{4} - \frac{1}{4}$	$\frac{\sqrt{2}}{2\pi}$	$\frac{1}{2} - \frac{\sqrt{2}}{4}$	0	0	0	0	0	0
2	$\frac{3}{16} - \frac{1}{2\pi}$	$\frac{1}{4\pi}$	$\frac{1}{2\pi}$	$\frac{1}{2\pi}$	$\frac{3}{16}-\frac{3}{8\pi}$	0	0	0	0
4	$\frac{11}{64} - \frac{8}{15\pi}$	$\frac{1}{40\pi}$	$\frac{4}{15\pi} - \frac{1}{16}$	$\frac{19}{120\pi}$	$\frac{3}{32}$	$\frac{2}{5\pi}$	$\frac{1}{16} + \frac{1}{6\pi}$	$\frac{1}{5\pi}$	$\frac{7}{64} - \frac{7}{24\pi}$

Table 1: The values of $\Phi_j(\beta, 3, 1)$.

	V_0	V_1	V_2	V_3	V_4	V_5	V_6	V_7	V_8
$\mathcal{C}_{\beta,1}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0	0	0	0
$\mathcal{C}_{1,2}$	$\frac{1}{2} - \frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$\frac{1}{2} - \frac{\sqrt{2}}{4}$	0	0	0	0	0
$\mathcal{C}_{2,2}$	$\frac{1}{4} - \frac{1}{2\pi}$	$\frac{1}{4}$	$\frac{1}{\pi}$	$\frac{1}{4}$	$\frac{1}{4} - \frac{1}{2\pi}$	0	0	0	0
$\mathcal{C}_{4,2}$	$\frac{1}{4} - \frac{2}{3\pi}$	$\frac{1}{8}$	$\frac{2}{3\pi}$	$\frac{1}{4}$	$\frac{2}{3\pi}$	$\frac{1}{8}$	$\frac{1}{4} - \frac{2}{3\pi}$	0	0
$\mathcal{C}_{1,3}$	$\frac{1}{4} - \frac{\sqrt{2}}{2\pi}$	$\frac{\sqrt{2}}{4} - \frac{1}{4}$	$\frac{\sqrt{2}}{2\pi}$	$1 - \frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2\pi}$	$\frac{\sqrt{2}}{4} - \frac{1}{4}$	$\frac{1}{4} - \frac{\sqrt{2}}{2\pi}$	0	0
$\mathcal{C}_{2,3}$	$\frac{1}{8} - \frac{3}{8\pi}$	$\tfrac{3}{16} - \tfrac{1}{2\pi}$	$\frac{1}{4\pi}$	$\frac{1}{2\pi}$	$\frac{3}{16} + \frac{1}{8\pi}$	$\frac{3}{16} + \frac{1}{8\pi}$	$\frac{1}{2\pi}$	$\frac{1}{4\pi}$	
$\mathcal{C}_{4,3}$	$\frac{1}{8} - \frac{47}{120\pi}$	$\frac{11}{64} - \frac{8}{15\pi}$	$\frac{1}{40\pi}$	$\frac{4}{15\pi} - \frac{1}{16}$	$\frac{19}{120\pi}$	$\frac{3}{32}$	$\frac{13}{120\pi} + \frac{7}{64}$	$\frac{11}{30\pi} + \frac{1}{16}$	

Table 2: Intrinsic volumes of $C_{\beta,n}$ for n = 1, 2, 3 (the missing entries for $C_{2,3}$ and $C_{4,3}$ are obtained via $V_j(C_{\beta,n}) = V_{d_{\beta,n-j}}(C_{\beta,n})$).

- Intuitive meaning of $V_j(C)$: how big are the j-dimensional "faces" of C?
- $\Phi_j(C,M)$: some sort of "localization" of $V_j(C)$ into M

- Intuitive meaning of $V_j(C)$: how big are the j-dimensional "faces" of C?
- $\Phi_j(C, M)$: some sort of "localization" of $V_j(C)$ into M
- Let us look at *Euclidean* intrinsic volumes first!

- Regular n-gon inscribed in the circle of radius r in 2D
 - Number of vertices: n
 - Circumference: $2nr\sin\frac{\pi}{n}$

• Area:
$$\frac{nr^2}{2}\sin\frac{2\pi}{n}$$

- Regular n-gon inscribed in the circle of radius r in 2D
 - Number of vertices: n
 - Circumference: $2nr\sin\frac{\pi}{n}$
 - Area: $\frac{nr^2}{2}\sin\frac{2\pi}{n}$
- Consider the area of the ϵ -neighborhood
 - Green: $\pi\epsilon^2$
 - Blue: $2nr\epsilon\sin\frac{\pi}{n}$
 - Red: $\frac{nr^2}{2}\sin\frac{2\pi}{n}$

- Regular n-gon inscribed in the circle of radius r in 2D
 - Number of vertices: n
 - Circumference: $2nr\sin\frac{\pi}{n}$
 - Area: $\frac{nr^2}{2}\sin\frac{2\pi}{n}$

• Normalize by the volume of (d - j)-dimensional ball:

•
$$V_0 = \pi \epsilon^2 / \pi \epsilon^2 = 1$$

• $V_1 = \left(2nr\epsilon \sin\frac{\pi}{n}\right) / 2\epsilon = nr \sin\frac{\pi}{n}$
• $V_2 = \left(\frac{nr^2}{2}\sin\frac{2\pi}{n}\right) / 1 = \frac{nr^2}{2}\sin\frac{2\pi}{n}$

- Regular n-gon inscribed in the circle of radius r in 2D
 - Number of vertices: n
 - Circumference: $2nr\sin\frac{\pi}{n}$

• Area:
$$\frac{nr^2}{2}\sin\frac{2\pi}{n}$$

• The area of the ϵ -neighborhood = $V_0 \operatorname{vol}_2(B_{\epsilon}^2) + V_1 \operatorname{vol}_1(B_{\epsilon}^1) + V_2 \operatorname{vol}_0(B_{\epsilon}^0)$

• In general, for a compact convex set K in \mathbb{R}^d , there uniquely exists $V_0(K)$, \cdots , $V_d(K) \ge 0$, called the **intrinsic volumes** of K, such that

$$\operatorname{vol}_d(K + B_{\epsilon}^d) = \sum_{j=0}^d V_j(K) \operatorname{vol}_{d-j}(B_{\epsilon}^{d-j})$$

• The above equation is called the Steiner's formula

• In general, for a compact convex set K in \mathbb{R}^d , there uniquely exists $V_0(K)$, \cdots , $V_d(K) \ge 0$, called the **intrinsic volumes** of K, such that

$$\operatorname{vol}_d(K + B_{\epsilon}^d) = \sum_{j=0}^d V_j(K) \operatorname{vol}_{d-j}(B_{\epsilon}^{d-j})$$

- The above equation is called the Steiner's formula
- V_j is continuous with respect to the Hausdorff metric • E.g., $\operatorname{vol}_2(B_r^2 + B_{\epsilon}^2) = \pi(r + \epsilon)^2 = 1 \cdot \pi \epsilon^2 + \pi r \cdot 2\epsilon + \pi r^2 \cdot 1$ • $V_0(B_r^2) = 1 = \lim_{n \to \infty} 1$ • $V_1(B_r^2) = \pi r = \lim_{n \to \infty} nr \sin \frac{\pi}{n}$ • $V_2(B_r^2) = \pi r^2 = \lim_{n \to \infty} \frac{nr^2}{2} \sin \frac{2\pi}{n}$

For a closed convex cone C ⊆ ℝ^d, we can define the conic intrinsic volumes V₀(C), ··· , V_d(C) of C using a spherical analogue of the Steiner's formula

For a closed convex cone C ⊆ ℝ^d, we can define the conic intrinsic volumes V₀(C), ··· , V_d(C) of C using a spherical analogue of the Steiner's formula

• For a *polyhedral* convex cone C, one can show

$$V_j(C) = \sum_{F \in \mathcal{F}_j} \Pr_{x \sim \mathcal{N}(0, I_d)} \left[\Pi_C(x) \in F \right]$$

where \mathcal{F}_j is the set of *j*-dimensional (open) faces of *C*

• When C is a 2-dimensional cone with the central angle $\theta,$

•
$$V_2(C) = \frac{\theta}{2\pi}$$

• $V_1(C) = \frac{1}{2}$
• $V_0(C) = \frac{\pi - \theta}{2\pi}$

 More generally, for a closed convex cone C ⊆ ℝ^d, we can define the conic curvature measures Φ₀(C, ·), ··· , Φ_d(C, ·) of C using a generalized Steiner's formula

• For a *polyhedral* convex cone C, one can show

$$\Phi_j(C,M) = \sum_{F \in \mathcal{F}_j} \Pr_{x \sim \mathcal{N}(0,I_d)} \left[\Pi_C(x) \in F \cap M \right]$$

where \mathcal{F}_j is the set of *j*-dimensional (open) faces of *C*

- When C is a 2-dimensional cone,
 - $\Phi_2(C, M) = (\text{central angle of } C \cap M)/2\pi$ • $\Phi_1(C, M) = (\# \text{ of boundary edges of } C \text{ contained in } M)/2$ • $\Phi_0(C, M) = \begin{cases} (\text{central angle of } \check{C})/2\pi & \text{if } 0 \in M \\ 0 & \text{if } 0 \notin M \end{cases}$

• When C is a 2-dimensional cone,

- $\Phi_2(C, M) = (\text{central angle of } C \cap M)/2\pi$
- $\Phi_1(C, M) = (\# \text{ of boundary edges of } C \text{ contained in } M)/2$

$$_{o}(C, M) = \begin{cases} (\text{central angle of } \check{C})/2\pi & \text{if } 0 \in M \end{cases}$$

• $\Phi_0(C,M) = \begin{cases} (\text{constant angle of } C)/2\pi & \text{if } 0 \in M \\ 0 & \text{if } 0 \notin M \end{cases}$

Lemma 2

Let $v, w \in S^{d-1}$, $\langle v, w \rangle = 0$, and $L \coloneqq \text{span} \{v, w\}$. Then for a closed convex cone $C \subseteq \mathbb{R}^d$, we have

$$\begin{split} \sup \left\{ \langle v, x \rangle : x \in C, \ \langle w, x \rangle = 1 \right\} \\ &= \sup \left\{ \langle v, x \rangle : x \in \Pi_L(C), \ \langle w, x \rangle = 1 \right\}, \\ \operatorname{Argmax} \left\{ \langle v, x \rangle : x \in C, \ \langle w, x \rangle = 1 \right\} \\ &= C \cap \Pi_L^{-1} \left[\operatorname{Argmax} \left\{ \langle v, x \rangle : x \in \Pi_L(C), \ \langle w, x \rangle = 1 \right\} \right]. \end{split}$$

Lemma 2

Let $v, w \in S^{d-1}$, $\langle v, w \rangle = 0$, and $L \coloneqq \text{span} \{v, w\}$. Then for a closed convex cone $C \subseteq \mathbb{R}^d$, we have

$$\sup \{ \langle v, x \rangle : x \in C, \ \langle w, x \rangle = 1 \}$$

=
$$\sup \{ \langle v, x \rangle : x \in \Pi_L(C), \ \langle w, x \rangle = 1 \},$$

Argmax
$$\{ \langle v, x \rangle : x \in C, \ \langle w, x \rangle = 1 \}$$

=
$$C \cap \Pi_L^{-1} [\operatorname{Argmax} \{ \langle v, x \rangle : x \in \Pi_L(C), \ \langle w, x \rangle = 1 \}].$$

Proof.

$$x = x_L + x_L^{\perp} \Rightarrow \langle v, x \rangle = \langle v, x_L \rangle$$
, $\langle w, x \rangle = \langle w, x_L \rangle$, so

$$\sup \{ \langle v, x \rangle : x \in C, \ \langle w, x \rangle = 1 \}$$
$$= \sup \{ \langle v, x_L \rangle : x_L \in \Pi_L(C), \ \langle w, x_L \rangle = 1 \}$$

and similarly the second claim follows.

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

• $W := \left\{ x \in \mathbb{R}^d : \langle a_i, x \rangle = 0, \ i = 1, \ \cdots, m \right\}$

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

•
$$W \coloneqq \{x \in \mathbb{R}^d : \langle a_i, x \rangle = 0, \ i = 1, \ \cdots, m\}$$

• $W_{\text{aff}} \coloneqq \{x \in \mathbb{R}^d : \langle a_i, x \rangle = b_i, \ i = 1, \ \cdots, m\}$

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

•
$$W \coloneqq \left\{ x \in \mathbb{R}^d \colon \langle a_i, x \rangle = 0, \ i = 1, \ \cdots, m \right\}$$

•
$$W_{\text{aff}} \coloneqq \left\{ x \in \mathbb{R}^d \colon \langle a_i, x \rangle = b_i, \ i = 1, \ \cdots, m \right\}$$

• w: unique unit vector s.t. $w \perp W$ and $W_{\text{aff}} = W + hw$ for some h > 0

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

•
$$W := \left\{ x \in \mathbb{R}^d : \langle a_i, x \rangle = 0, \ i = 1, \ \cdots, m \right\}$$

• $W_{\text{aff}} \coloneqq \left\{ x \in \mathbb{R}^d \colon \langle a_i, x \rangle = b_i, \ i = 1, \ \cdots, m \right\}$

• w: unique unit vector s.t. $w \perp W$ and $W_{\text{aff}} = W + hw$ for some h > 0• $\tilde{W} \coloneqq \text{span} W_{\text{aff}}$

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

• $W \coloneqq \left\{ x \in \mathbb{R}^d \colon \langle a_i, x \rangle = 0, \ i = 1, \ \cdots, m \right\}$

• $W_{\text{aff}} \coloneqq \left\{ x \in \mathbb{R}^d \colon \langle a_i, x \rangle = b_i, \ i = 1, \ \cdots, m \right\}$

- w: unique unit vector s.t. w⊥W and W_{aff} = W + hw for some h > 0
 W̃ ≔ span W_{aff}
- $v \coloneqq \Pi_W(z)$

maximize
$$\langle z, x \rangle$$

subject to $\langle a_i, x \rangle = b_i, \quad i = 1, \dots, m,$ (CP)
 $x \in C$

- $W := \left\{ x \in \mathbb{R}^d : \langle a_i, x \rangle = 0, \ i = 1, \ \cdots, m \right\}$
- $W_{\text{aff}} \coloneqq \left\{ x \in \mathbb{R}^d \colon \langle a_i, x \rangle = b_i, \ i = 1, \ \cdots, m \right\}$
- w: unique unit vector s.t. w⊥W and W_{aff} = W + hw for some h > 0
 W̃ ≔ span W_{aff}
- $v \coloneqq \Pi_W(z)$

• Write $x \in \tilde{W}$ as x = hy for some $y \in W + w$, then

•
$$\langle z, x \rangle = \langle v, x \rangle + \langle z - v, x \rangle = h \langle v, y \rangle + h \langle z - v, w \rangle$$

• Write $x \in \tilde{W}$ as x = hy for some $y \in W + w$, then

•
$$\langle z, x \rangle = \langle v, x \rangle + \langle z - v, x \rangle = h \langle v, y \rangle + h \langle z - v, w \rangle$$

• Thus, (CP) is equivalent to the problem

maximize
$$\langle v, y \rangle$$

subject to $\langle w, y \rangle = 1$
 $y \in C \cap \tilde{W}$

• Write $x \in \tilde{W}$ as x = hy for some $y \in W + w$, then

•
$$\langle z, x \rangle = \langle v, x \rangle + \langle z - v, x \rangle = h \langle v, y \rangle + h \langle z - v, w \rangle$$

• Thus, (CP) is equivalent to the problem

maximize
$$\langle v, y \rangle$$

subject to $\langle w, y \rangle = 1$
 $y \in C \cap \tilde{W}$

which can be, by the lemma, further reduced to

maximize
$$\langle v, y \rangle$$

subject to $\langle w, y \rangle = 1$ (CP2D)
 $y \in \Pi_L(C \cap \tilde{W})$

• Reformulate the problem:

- Reformulate the problem:
 - $\textcircled{0} \quad \text{Uniformly randomly generate a subspace } \tilde{W} \text{ of codimension } m-1$
 - 2 Uniformly randomly generate a 2-dimensional subspace L of \tilde{W}

- Reformulate the problem:
 - **(**) Uniformly randomly generate a subspace $ilde{W}$ of codimension m-1
 - 2 Uniformly randomly generate a 2-dimensional subspace L of $ilde{W}$
 - **③** Uniformly randomly generate an orthonormal frame (v, w) from L

- Reformulate the problem:
 - **(**) Uniformly randomly generate a subspace $ilde{W}$ of codimension m-1
 - ② Uniformly randomly generate a 2-dimensional subspace L of $ilde{W}$
 - ${f 3}$ Uniformly randomly generate an orthonormal frame (v,w) from L
- Given these, we are looking for the probabilities that the following optimization problem is (1) infeasible, (2) unbounded, (3) has a unique solution and that solution is in $\Pi_L(M \cap \tilde{W})$ some conic Borel set M:

maximize
$$\langle v, y \rangle$$

subject to $\langle w, y \rangle = 1$ (CP2D)
 $y \in \Pi_L(C \cap \tilde{W})$

Lemma 3

Let $\bar{C} \subseteq \mathbb{R}^2$ be a closed convex cone. For a uniformly random $\begin{bmatrix} v & w \end{bmatrix} \in O(2)$, define

$$\bar{F} \coloneqq \left\{ x \in \bar{C} \colon \langle w, x \rangle = 1 \right\},\$$

then we have

$$\Pr\left[\bar{F} = \emptyset\right] = V_0(\bar{C}),$$
$$\Pr\left[\sup\left\{\langle v, x \rangle : x \in \bar{F}\right\} = \infty\right] = V_2(\bar{C}),$$
$$\Pr\left[\operatorname{argmax}\left\{\langle v, x \rangle : x \in \bar{F}\right\} \in M\right] = \Phi_1(\bar{C}, M)$$

for any conic Borel set $M \subseteq \mathbb{R}^2$.

•
$$\Pr\left[\bar{F} = \emptyset\right] = V_0(\bar{C})$$

• $\Pr\left[\sup\left\{\langle v, x\rangle : x \in \bar{F}\right\} = \infty\right] = V_2(\bar{C})$

• $\Pr\left[\operatorname{argmax}\left\{\langle v, x \rangle : x \in \bar{F}\right\} \in M\right] = \Phi_1(\bar{C}, M)$

- \bullet Left: argmax is on the left boundary edge
- \bullet Right: argmax is on the right boundary edge
- If M contains no boundary, we get $0=\Phi_1(\bar{C},M)$
- If M contains both boundaries, we get $\frac{1}{2} = V_1(\bar{C}) = \Phi_1(\bar{C},M)$
- If M contains only one of the boundaries, we get $\frac{1}{4}=\frac{1}{2}V_1(\bar{C})=\Phi_1(\bar{C},M)$

Proof of Theorem 1.

By the previous discussions,

$$\Pr_{\substack{a_1, \dots, a_m, z, \\ b_1, \dots, b_m}} [(CP) \text{ is infeasible}] = \Pr_{\tilde{W}, L} \Pr_{v, w} [(CP2D) \text{ is infeasible}]$$
$$= \mathbb{E}_{\tilde{W}, L} \left[V_0(\Pi_L(C \cap \tilde{W})) \right]$$

and

$$\Pr_{\substack{a_1, \dots, a_m, z, \\ b_1, \dots, b_m}} [(CP) \text{ is unbounded}] = \Pr_{\tilde{W}, L} \Pr_{v, w} [(CP2D) \text{ is unbounded}]$$
$$= \mathbb{E}_{\tilde{W}, L} \left[V_2(\Pi_L(C \cap \tilde{W})) \right],$$

and similarly,

$$\Pr_{\substack{a_1, \ \cdots, a_m, z, \\ b_1, \ \cdots, b_m}} [\operatorname{sol} (\operatorname{CP}) \in M] = \Pr_{\tilde{W}, L} \Pr_v \left[\operatorname{sol} (\operatorname{CP2D}) \in \Pi_L(M \cap \tilde{W}) \right]$$
$$= \mathbb{E}_{\tilde{W}, L} \left[\Phi_1(\Pi_L(C \cap \tilde{W}), \Pi_L(M \cap \tilde{W})) \right]$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, d-m,$$
$$\mathbb{E}\left[V_{0}(C \cap W)\right] = V_{0}(C) + V_{1}(C) + \ \cdots + V_{m}(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C), \Pi_{W}(M))\right] = \Phi_{j}(C, M), \quad for \ j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, d-m, \\ \mathbb{E}\left[V_{0}(C \cap W)\right] = V_{0}(C) + V_{1}(C) + \ \cdots + V_{m}(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C),\Pi_{W}(M))\right] = \Phi_{j}(C,M), \quad for \ j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \cdots, a_m, z, \\ b_1, \cdots, b_m}} [(CP) \text{ is infeasible}] = \mathbb{E}_{\tilde{W}, L} \left[V_0(\Pi_L(C \cap \tilde{W})) \right]$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, d-m, \\ \mathbb{E}\left[V_{0}(C \cap W)\right] = V_{0}(C) + V_{1}(C) + \ \cdots + V_{m}(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C),\Pi_{W}(M))\right] = \Phi_{j}(C,M), \quad for \ j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \ \cdots, a_m, z, \\ b_1, \ \cdots, b_m}} [(CP) \text{ is infeasible}] = \mathbb{E}_{\tilde{W}, L} \left[V_0(\Pi_L(C \cap \tilde{W})) \right]$$
$$= \mathbb{E}_{\tilde{W}} \left[V_0(C \cap \tilde{W}) \right]$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, d-m, \\ \mathbb{E}\left[V_{0}(C \cap W)\right] = V_{0}(C) + V_{1}(C) + \ \cdots + V_{m}(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C), \Pi_{W}(M))\right] = \Phi_{j}(C, M), \quad \text{for } j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \cdots, a_m, z, \\ b_1, \cdots, b_m}} [(CP) \text{ is infeasible}] = \mathbb{E}_{\tilde{W}, L} \left[V_0(\Pi_L(C \cap \tilde{W})) \right]$$
$$= \mathbb{E}_{\tilde{W}} \left[V_0(C \cap \tilde{W}) \right] = V_0(C) + V_1(C) + \cdots + V_{m-1}(C).$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, d-m,$$
$$\mathbb{E}\left[V_{0}(C \cap W)\right] = V_{0}(C) + V_{1}(C) + \ \cdots + V_{m}(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C), \Pi_{W}(M))\right] = \Phi_{j}(C, M), \quad \text{for } j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \dots, a_m, z, \\ b_1, \dots, b_m}} \left[(CP) \text{ is unbounded} \right] = \mathbb{E}_{\tilde{W}, L} \left[V_2(\Pi_L(C \cap \tilde{W})) \right]$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}[\Phi_j(C \cap W, M \cap W)] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, \ d-m,$$
$$\mathbb{E}[V_0(C \cap W)] = V_0(C) + V_1(C) + \ \cdots + V_m(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C), \Pi_{W}(M))\right] = \Phi_{j}(C, M), \quad \text{for } j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \cdots, a_m, z, \\ b_1, \cdots, b_m}} [(CP) \text{ is unbounded}] = \mathbb{E}_{\tilde{W}, L} \left[V_2(\Pi_L(C \cap \tilde{W})) \right]$$
$$= \mathbb{E}_{\tilde{W}} \left[V_2(C \cap \tilde{W}) + V_3(C \cap \tilde{W}) + \cdots + V_{d-m+1}(C \cap \tilde{W}) \right]$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}[\Phi_j(C \cap W, M \cap W)] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, \ d-m, \\ \mathbb{E}[V_0(C \cap W)] = V_0(C) + V_1(C) + \ \cdots + V_m(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C), \Pi_{W}(M))\right] = \Phi_{j}(C, M), \quad for \ j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \cdots, a_m, z, \\ b_1, \cdots, b_m}} [(CP) \text{ is unbounded}] = \mathbb{E}_{\tilde{W}, L} \left[V_2(\Pi_L(C \cap \tilde{W})) \right]$$
$$= \mathbb{E}_{\tilde{W}} \left[V_2(C \cap \tilde{W}) + V_3(C \cap \tilde{W}) + \cdots + V_{d-m+1}(C \cap \tilde{W}) \right]$$
$$= V_{m+1}(C) + V_{m+2}(C) + \cdots + V_d(C).$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, d-m, \\ \mathbb{E}\left[V_{0}(C \cap W)\right] = V_{0}(C) + V_{1}(C) + \ \cdots + V_{m}(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C),\Pi_{W}(M))\right] = \Phi_{j}(C,M), \quad for \ j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \cdots, a_m, z, \\ b_1, \cdots, b_m}} [\operatorname{sol} (\operatorname{CP}) \in M] = \mathbb{E}_{\tilde{W}, L} \left[\Phi_1(\Pi_L(C \cap \tilde{W}), \Pi_L(M \cap \tilde{W})) \right]$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}[\Phi_j(C \cap W, M \cap W)] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, \ d-m,$$
$$\mathbb{E}[V_0(C \cap W)] = V_0(C) + V_1(C) + \ \cdots + V_m(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C), \Pi_{W}(M))\right] = \Phi_{j}(C, M), \quad \text{for } j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \cdots, a_m, z, \\ b_1, \cdots, b_m}} [\operatorname{sol} (\operatorname{CP}) \in M] = \mathbb{E}_{\tilde{W}, L} \left[\Phi_1(\Pi_L(C \cap \tilde{W}), \Pi_L(M \cap \tilde{W})) \right]$$
$$= \mathbb{E}_{\tilde{W}} \left[\Phi_1(C \cap \tilde{W}, M \cap \tilde{W}) \right]$$

Let $C \subseteq \mathbb{R}^d$ be a closed convex cone, and $W \subseteq \mathbb{R}^d$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^d . Then,

(Random intersection formula)

$$\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] = \Phi_{m+j}(C, M), \quad for \ j = 1, \ \cdots, d-m, \\ \mathbb{E}\left[V_{0}(C \cap W)\right] = V_{0}(C) + V_{1}(C) + \ \cdots + V_{m}(C).$$

(Random projection formula)

$$\mathbb{E}\left[\Phi_{j}(\Pi_{W}(C),\Pi_{W}(M))\right] = \Phi_{j}(C,M), \quad for \ j = 0, \ \cdots, d - m - 1$$
$$\mathbb{E}\left[V_{d-m}(\Pi_{W}(C))\right] = V_{d-m}(C) + V_{d-m+1}(C) + \ \cdots + V_{d}(C).$$

$$\Pr_{\substack{a_1, \cdots, a_m, z, \\ b_1, \cdots, b_m}} [\operatorname{sol} (\operatorname{CP}) \in M] = \mathbb{E}_{\tilde{W}, L} \left[\Phi_1(\Pi_L(C \cap \tilde{W}), \Pi_L(M \cap \tilde{W})) \right]$$
$$= \mathbb{E}_{\tilde{W}} \left[\Phi_1(C \cap \tilde{W}, M \cap \tilde{W}) \right] = \Phi_m(C, M).$$

Any questions?