Conic Intrinsic Volumes and Conic Linear Programming

Junekey Jeon

UCSD

- (2015,D. Amelunxen and P. Bürgisser) Intrinsic volumes of symmetric cones and applications in convex programming
- (2018 arXiv version) Intrinsic volumes of symmetric cones

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $a_{1}, \cdots, a_{m}, z \in \mathbb{R}^{d}, b_{1}, \cdots, b_{m} \in \mathbb{R}$
- C is a closed convex cone in \mathbb{R}^{d}

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $a_{1}, \cdots, a_{m}, z \in \mathbb{R}^{d}, b_{1}, \cdots, b_{m} \in \mathbb{R}$
- C is a closed convex cone in \mathbb{R}^{d}

Theorem 1

When a_{1}, \cdots, a_{m}, z and b_{1}, \cdots, b_{m} are iid standard normal,

$$
\begin{aligned}
\operatorname{Pr}[(\mathrm{CP}) \text { is infeasible }] & =\sum_{j=0}^{m-1} V_{j}(C), \\
\operatorname{Pr}[(\mathrm{CP}) \text { is unbounded }] & =\sum_{j=m+1}^{d} V_{j}(C) .
\end{aligned}
$$

Furthermore, for a conic Borel set $M \subseteq \mathbb{R}^{d}$,

$$
\operatorname{Pr}[\operatorname{sol}(\mathrm{CP}) \in M]=\Phi_{m}(C, M)
$$

- $\Phi_{j}(C, \cdot)$ is called the j th (conic) curvature measure of C
- $V_{j}(C):=\Phi_{j}\left(C, \mathbb{R}^{d}\right)$ is called the j th (conic) intrinsic volume of C
- $\Phi_{j}(C, \cdot)$ is called the j th (conic) curvature measure of C
- $V_{j}(C):=\Phi_{j}\left(C, \mathbb{R}^{d}\right)$ is called the j th (conic) intrinsic volume of C
- In particular, if $A_{1}, \cdots, A_{m}, Z \sim \operatorname{GOE}(d)$ or $\operatorname{GUE}(d)$ or $\operatorname{GSE}(d)$, b_{1}, \cdots, b_{m} are iid standard normal from \mathbb{R} or \mathbb{C} or \mathbb{H}, then for semidefinite program

$$
\begin{align*}
\operatorname{maximize} & \operatorname{tr}\left(Z^{\dagger} X\right) \\
\text { subject to } & \operatorname{tr}\left(A_{i}^{\dagger} X\right)=b_{i}, \quad i=1, \cdots, m \tag{SDP}\\
& X \succeq 0
\end{align*}
$$

we can compute

$$
\operatorname{Pr}[(\mathrm{SDP}) \text { is infeasible }], \operatorname{Pr}[(\mathrm{SDP}) \text { is unbounded }],
$$

and also

$$
\operatorname{Pr}[\operatorname{rank}(\operatorname{sol}(\mathrm{CP}))=r]
$$

for each $0 \leq r \leq d$, by obtaining an explicit formula for the intrinsic volumes and the curvature measures of the positive-semidefinite cone evaluated at the set of rank r matrices

j	1	2	3	4	5	6	7	8	9
β^{j}	$\frac{\sqrt{2}}{4}-\frac{1}{4}$	$\frac{\sqrt{2}}{2 \pi}$	$\frac{1}{2}-\frac{\sqrt{2}}{4}$	0	0	0	0	0	0
2	$\frac{3}{16}-\frac{1}{2 \pi}$	$\frac{1}{4 \pi}$	$\frac{1}{2 \pi}$	$\frac{1}{2 \pi}$	$\frac{3}{16}-\frac{3}{8 \pi}$	0	0	0	0
4	$\frac{11}{64}-\frac{8}{15 \pi}$	$\frac{1}{40 \pi}$	$\frac{4}{15 \pi}-\frac{1}{16}$	$\frac{19}{120 \pi}$	$\frac{3}{32}$	$\frac{2}{5 \pi}$	$\frac{1}{16}+\frac{1}{6 \pi}$	$\frac{1}{5 \pi}$	$\frac{7}{64}-\frac{7}{24 \pi}$

Table 1: The values of $\Phi_{j}(\beta, 3,1)$.

	V_{0}	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}	V_{8}
$\mathcal{C}_{\beta, 1}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0	0	0	0
$\mathcal{C}_{1,2}$	$\frac{1}{2}-\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$\frac{\sqrt{2}}{4}$	$\frac{1}{2}-\frac{\sqrt{2}}{4}$	0	0	0	0	0
$\mathcal{C}_{2,2}$	$\frac{1}{4}-\frac{1}{2 \pi}$	$\frac{1}{4}$	$\frac{1}{\pi}$	$\frac{1}{4}$	$\frac{1}{4}-\frac{1}{2 \pi}$	0	0	0	0
$\mathcal{C}_{4,2}$	$\frac{1}{4}-\frac{2}{3 \pi}$	$\frac{1}{8}$	$\frac{2}{3 \pi}$	$\frac{1}{4}$	$\frac{2}{3 \pi}$	$\frac{1}{8}$	$\frac{1}{4}-\frac{2}{3 \pi}$	0	0
$\mathcal{C}_{1,3}$	$\frac{1}{4}-\frac{\sqrt{2}}{2 \pi}$	$\frac{\sqrt{2}}{4}-\frac{1}{4}$	$\frac{\sqrt{2}}{2 \pi}$	$1-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2 \pi}$	$\frac{\sqrt{2}}{4}-\frac{1}{4}$	$\frac{1}{4}-\frac{\sqrt{2}}{2 \pi}$	0	0
$\mathcal{C}_{2,3}$	$\frac{1}{8}-\frac{3}{8 \pi}$	$\frac{3}{16}-\frac{1}{2 \pi}$	$\frac{1}{4 \pi}$	$\frac{1}{2 \pi}$	$\frac{3}{16}+\frac{1}{8 \pi}$	$\frac{3}{16}+\frac{1}{8 \pi}$	$\frac{1}{2 \pi}$	$\frac{1}{4 \pi}$	\ldots
$\mathcal{C}_{4,3}$	$\frac{1}{8}-\frac{47}{120 \pi}$	$\frac{11}{64}-\frac{8}{15 \pi}$	$\frac{1}{40 \pi}$	$\frac{4}{15 \pi}-\frac{1}{16}$	$\frac{19}{120 \pi}$	$\frac{3}{32}$	$\frac{13}{120 \pi}+\frac{7}{64}$	$\frac{11}{30 \pi}+\frac{1}{16}$	\ldots

Table 2: Intrinsic volumes of $\mathcal{C}_{\beta, n}$ for $n=1,2,3$ (the missing entries for $\mathcal{C}_{2,3}$ and $\mathcal{C}_{4,3}$ are obtained via $\left.V_{j}\left(\mathcal{C}_{\beta, n}\right)=V_{d_{\beta, n}-j}\left(\mathcal{C}_{\beta, n}\right)\right)$.

- Intuitive meaning of $V_{j}(C)$: how big are the j-dimensional "faces" of C ?
- $\Phi_{j}(C, M)$: some sort of "localization" of $V_{j}(C)$ into M
- Intuitive meaning of $V_{j}(C)$: how big are the j-dimensional "faces" of C ?
- $\Phi_{j}(C, M)$: some sort of "localization" of $V_{j}(C)$ into M
- Let us look at Euclidean intrinsic volumes first!
- Regular n-gon inscribed in the circle of radius r in 2D
- Number of vertices: n
- Circumference: $2 n r \sin \frac{\pi}{n}$
- Area: $\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}$

- Regular n-gon inscribed in the circle of radius r in 2D
- Number of vertices: n
- Circumference: $2 n r \sin \frac{\pi}{n}$
- Area: $\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}$
- Consider the area of the ϵ-neighborhood
- Green: $\pi \epsilon^{2}$
- Blue: $2 n r \epsilon \sin \frac{\pi}{n}$
- Red: $\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}$

- Regular n-gon inscribed in the circle of radius r in 2D
- Number of vertices: n
- Circumference: $2 n r \sin \frac{\pi}{n}$
- Area: $\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}$
- Normalize by the volume of $(d-j)$-dimensional ball:
- $V_{0}=\pi \epsilon^{2} / \pi \epsilon^{2}=1$
- $V_{1}=\left(2 n r \epsilon \sin \frac{\pi}{n}\right) / 2 \epsilon=n r \sin \frac{\pi}{n}$
- $V_{2}=\left(\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}\right) / 1=\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}$

- Regular n-gon inscribed in the circle of radius r in 2D
- Number of vertices: n
- Circumference: $2 n r \sin \frac{\pi}{n}$
- Area: $\frac{n r^{2}}{2} \sin \frac{2 \pi}{n}$
- The area of the ϵ-neighborhood $=V_{0} \operatorname{vol}_{2}\left(B_{\epsilon}^{2}\right)+V_{1} \operatorname{vol}_{1}\left(B_{\epsilon}^{1}\right)+V_{2} \operatorname{vol}_{0}\left(B_{\epsilon}^{0}\right)$

- In general, for a compact convex set K in \mathbb{R}^{d}, there uniquely exists $V_{0}(K), \cdots, V_{d}(K) \geq 0$, called the intrinsic volumes of K, such that

$$
\operatorname{vol}_{d}\left(K+B_{\epsilon}^{d}\right)=\sum_{j=0}^{d} V_{j}(K) \operatorname{vol}_{d-j}\left(B_{\epsilon}^{d-j}\right)
$$

- The above equation is called the Steiner's formula
- In general, for a compact convex set K in \mathbb{R}^{d}, there uniquely exists $V_{0}(K), \cdots, V_{d}(K) \geq 0$, called the intrinsic volumes of K, such that

$$
\operatorname{vol}_{d}\left(K+B_{\epsilon}^{d}\right)=\sum_{j=0}^{d} V_{j}(K) \operatorname{vol}_{d-j}\left(B_{\epsilon}^{d-j}\right)
$$

- The above equation is called the Steiner's formula
- V_{j} is continuous with respect to the Hausdorff metric
- E.g., $\operatorname{vol}_{2}\left(B_{r}^{2}+B_{\epsilon}^{2}\right)=\pi(r+\epsilon)^{2}=1 \cdot \pi \epsilon^{2}+\pi r \cdot 2 \epsilon+\pi r^{2} \cdot 1$
- $V_{0}\left(B_{r}^{2}\right)=1=\lim _{n \rightarrow \infty} 1$
- $V_{1}\left(B_{r}^{2}\right)=\pi r=\lim _{n \rightarrow \infty} n r \sin \frac{\pi}{n}$
- $V_{2}\left(B_{r}^{2}\right)=\pi r^{2}=\lim _{n \rightarrow \infty} \frac{n r^{2}}{2} \sin \frac{2 \pi}{n}$
- For a closed convex cone $C \subseteq \mathbb{R}^{d}$, we can define the conic intrinsic volumes $V_{0}(C), \cdots, V_{d}(C)$ of C using a spherical analogue of the Steiner's formula
- For a closed convex cone $C \subseteq \mathbb{R}^{d}$, we can define the conic intrinsic volumes $V_{0}(C), \cdots, V_{d}(C)$ of C using a spherical analogue of the Steiner's formula
- For a polyhedral convex cone C, one can show

$$
V_{j}(C)=\sum_{F \in \mathcal{F}_{j}} \operatorname{Pr}_{x \sim \mathcal{N}\left(0, I_{d}\right)}\left[\Pi_{C}(x) \in F\right]
$$

where \mathcal{F}_{j} is the set of j-dimensional (open) faces of C

- When C is a 2-dimensional cone with the central angle θ,
- $V_{2}(C)=\frac{\theta}{2 \pi}$
- $V_{1}(C)=\frac{1}{2}$
- $V_{0}(C)=\frac{\pi-\theta}{2 \pi}$

- More generally, for a closed convex cone $C \subseteq \mathbb{R}^{d}$, we can define the conic curvature measures $\Phi_{0}(C, \cdot), \cdots, \Phi_{d}(C, \cdot)$ of C using a generalized Steiner's formula
- For a polyhedral convex cone C, one can show

$$
\Phi_{j}(C, M)=\sum_{F \in \mathcal{F}_{j}} \operatorname{Pr}_{x \sim \mathcal{N}\left(0, I_{d}\right)}\left[\Pi_{C}(x) \in F \cap M\right]
$$

where \mathcal{F}_{j} is the set of j-dimensional (open) faces of C

- When C is a 2 -dimensional cone,
- $\Phi_{2}(C, M)=($ central angle of $C \cap M) / 2 \pi$
- $\Phi_{1}(C, M)=(\#$ of boundary edges of C contained in $M) / 2$
- $\Phi_{0}(C, M)= \begin{cases}(\text { central angle of } \check{C}) / 2 \pi & \text { if } 0 \in M \\ 0 & \text { if } 0 \notin M\end{cases}$
- When C is a 2 -dimensional cone,
- $\Phi_{2}(C, M)=($ central angle of $C \cap M) / 2 \pi$
- $\Phi_{1}(C, M)=(\#$ of boundary edges of C contained in $M) / 2$
- $\Phi_{0}(C, M)= \begin{cases}(\text { central angle of } \check{C}) / 2 \pi & \text { if } 0 \in M \\ 0 & \text { if } 0 \notin M\end{cases}$

Lemma 2

Let $v, w \in S^{d-1},\langle v, w\rangle=0$, and $L:=\operatorname{span}\{v, w\}$. Then for a closed convex cone $C \subseteq \mathbb{R}^{d}$, we have

$$
\begin{aligned}
\sup \{\langle v, x\rangle & : x \in C,\langle w, x\rangle=1\} \\
& =\sup \left\{\langle v, x\rangle: x \in \Pi_{L}(C),\langle w, x\rangle=1\right\} \\
\operatorname{Argmax} & \{\langle v, x\rangle: x \in C,\langle w, x\rangle=1\} \\
& =C \cap \Pi_{L}^{-1}\left[\operatorname{Argmax}\left\{\langle v, x\rangle: x \in \Pi_{L}(C),\langle w, x\rangle=1\right\}\right] .
\end{aligned}
$$

Lemma 2

Let $v, w \in S^{d-1},\langle v, w\rangle=0$, and $L:=\operatorname{span}\{v, w\}$. Then for a closed convex cone $C \subseteq \mathbb{R}^{d}$, we have

$$
\begin{aligned}
& \sup \{\langle v, x\rangle: x \in C,\langle w, x\rangle=1\} \\
& \quad=\sup \left\{\langle v, x\rangle: x \in \Pi_{L}(C),\langle w, x\rangle=1\right\} \\
& \begin{aligned}
\operatorname{Argmax} & \{\langle v, x\rangle: x \in C,\langle w, x\rangle=1\} \\
& =C \cap \Pi_{L}^{-1}\left[\operatorname{Argmax}\left\{\langle v, x\rangle: x \in \Pi_{L}(C),\langle w, x\rangle=1\right\}\right] .
\end{aligned}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& x=x_{L}+x_{L}^{\perp} \Rightarrow\langle v, x\rangle=\left\langle v, x_{L}\right\rangle,\langle w, x\rangle=\left\langle w, x_{L}\right\rangle, \text { so } \\
& \quad \sup \{\langle v, x\rangle: x \in C,\langle w, x\rangle=1\} \\
& =\sup \left\{\left\langle v, x_{L}\right\rangle: x_{L} \in \Pi_{L}(C),\left\langle w, x_{L}\right\rangle=1\right\},
\end{aligned}
$$

and similarly the second claim follows.

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $W:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=0, i=1, \cdots, m\right\}$

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $W:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=0, i=1, \cdots, m\right\}$
- $W_{\mathrm{aff}}:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=b_{i}, i=1, \cdots, m\right\}$

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $W:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=0, i=1, \cdots, m\right\}$
- $W_{\mathrm{aff}}:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=b_{i}, i=1, \cdots, m\right\}$
- w : unique unit vector s.t. $w \perp W$ and $W_{\text {aff }}=W+h w$ for some $h>0$

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $W:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=0, i=1, \cdots, m\right\}$
- $W_{\mathrm{aff}}:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=b_{i}, i=1, \cdots, m\right\}$
- w : unique unit vector s.t. $w \perp W$ and $W_{\text {aff }}=W+h w$ for some $h>0$
- $\tilde{W}:=\operatorname{span} W_{\text {aff }}$

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $W:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=0, i=1, \cdots, m\right\}$
- $W_{\mathrm{aff}}:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=b_{i}, i=1, \cdots, m\right\}$
- w : unique unit vector s.t. $w \perp W$ and $W_{\text {aff }}=W+h w$ for some $h>0$
- $\tilde{W}:=\operatorname{span} W_{\text {aff }}$
- $v:=\Pi_{W}(z)$

$$
\begin{align*}
\operatorname{maximize} & \langle z, x\rangle \\
\text { subject to } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \cdots, m \tag{CP}\\
& x \in C
\end{align*}
$$

- $W:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=0, i=1, \cdots, m\right\}$
- $W_{\mathrm{aff}}:=\left\{x \in \mathbb{R}^{d}:\left\langle a_{i}, x\right\rangle=b_{i}, i=1, \cdots, m\right\}$
- w : unique unit vector s.t. $w \perp W$ and $W_{\text {aff }}=W+h w$ for some $h>0$
- $\tilde{W}:=\operatorname{span} W_{\text {aff }}$
- $v:=\Pi_{W}(z)$

- Write $x \in \tilde{W}$ as $x=h y$ for some $y \in W+w$, then
- $\langle z, x\rangle=\langle v, x\rangle+\langle z-v, x\rangle=h\langle v, y\rangle+h\langle z-v, w\rangle$
- Write $x \in \tilde{W}$ as $x=h y$ for some $y \in W+w$, then
- $\langle z, x\rangle=\langle v, x\rangle+\langle z-v, x\rangle=h\langle v, y\rangle+h\langle z-v, w\rangle$
- Thus, (CP) is equivalent to the problem

$$
\begin{aligned}
\operatorname{maximize} & \langle v, y\rangle \\
\text { subject to } & \langle w, y\rangle=1 \\
& y \in C \cap \tilde{W}
\end{aligned}
$$

- Write $x \in \tilde{W}$ as $x=h y$ for some $y \in W+w$, then
- $\langle z, x\rangle=\langle v, x\rangle+\langle z-v, x\rangle=h\langle v, y\rangle+h\langle z-v, w\rangle$
- Thus, (CP) is equivalent to the problem

$$
\begin{aligned}
\operatorname{maximize} & \langle v, y\rangle \\
\text { subject to } & \langle w, y\rangle=1 \\
& y \in C \cap \tilde{W}
\end{aligned}
$$

which can be, by the lemma, further reduced to

$$
\begin{align*}
\operatorname{maximize} & \langle v, y\rangle \\
\text { subject to } & \langle w, y\rangle=1 \tag{CP2D}\\
& y \in \Pi_{L}(C \cap \tilde{W})
\end{align*}
$$

- Reformulate the problem:
(1) Uniformly randomly generate a subspace \tilde{W} of codimension $m-1$
- Reformulate the problem:
(1) Uniformly randomly generate a subspace \tilde{W} of codimension $m-1$
(2) Uniformly randomly generate a 2-dimensional subspace L of \tilde{W}
- Reformulate the problem:
(1) Uniformly randomly generate a subspace \tilde{W} of codimension $m-1$
(2) Uniformly randomly generate a 2-dimensional subspace L of \tilde{W}
(3) Uniformly randomly generate an orthonormal frame (v, w) from L
- Reformulate the problem:
(1) Uniformly randomly generate a subspace \tilde{W} of codimension $m-1$
(2) Uniformly randomly generate a 2-dimensional subspace L of \tilde{W}
(3) Uniformly randomly generate an orthonormal frame (v, w) from L
- Given these, we are looking for the probabilities that the following optimization problem is (1) infeasible, (2) unbounded, (3) has a unique solution and that solution is in $\Pi_{L}(M \cap \tilde{W})$ some conic Borel set M :

$$
\begin{align*}
\operatorname{maximize} & \langle v, y\rangle \\
\text { subject to } & \langle w, y\rangle=1 \tag{CP2D}\\
& y \in \Pi_{L}(C \cap \tilde{W})
\end{align*}
$$

Lemma 3

Let $\bar{C} \subseteq \mathbb{R}^{2}$ be a closed convex cone. For a uniformly random $\left[\begin{array}{ll}v & w\end{array}\right] \in O(2)$, define

$$
\bar{F}:=\{x \in \bar{C}:\langle w, x\rangle=1\},
$$

then we have

$$
\begin{aligned}
\operatorname{Pr}[\bar{F}=\emptyset] & =V_{0}(\bar{C}), \\
\operatorname{Pr}[\sup \{\langle v, x\rangle: x \in \bar{F}\}=\infty] & =V_{2}(\bar{C}), \\
\operatorname{Pr}[\operatorname{argmax}\{\langle v, x\rangle: x \in \bar{F}\} \in M] & =\Phi_{1}(\bar{C}, M)
\end{aligned}
$$

for any conic Borel set $M \subseteq \mathbb{R}^{2}$.

- $\operatorname{Pr}[\bar{F}=\emptyset]=V_{0}(\bar{C})$

- $\operatorname{Pr}[\sup \{\langle v, x\rangle: x \in \bar{F}\}=\infty]=V_{2}(\bar{C})$

- Pr $[\operatorname{argmax}\{\langle v, x\rangle: x \in \bar{F}\} \in M]=\Phi_{1}(\bar{C}, M)$

- Left: argmax is on the left boundary edge
- Right: argmax is on the right boundary edge
- If M contains no boundary, we get $0=\Phi_{1}(\bar{C}, M)$
- If M contains both boundaries, we get $\frac{1}{2}=V_{1}(\bar{C})=\Phi_{1}(\bar{C}, M)$
- If M contains only one of the boundaries, we get
$\frac{1}{4}=\frac{1}{2} V_{1}(\bar{C})=\Phi_{1}(\bar{C}, M)$

Proof of Theorem 1.

By the previous discussions,

$$
\begin{aligned}
& { }_{a_{1}, \ldots, a_{m}, z,}^{\operatorname{Pr}}[(\mathrm{CP}) \text { is infeasible }]=\operatorname{Pr}_{\tilde{W}, L} \operatorname{Pr}_{v, w}[(\mathrm{CP} 2 \mathrm{D}) \text { is infeasible }] \\
& b_{1}, \cdots, b_{m} \\
& =\mathbb{E}_{\tilde{W}, L}\left[V_{0}\left(\Pi_{L}(C \cap \tilde{W})\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\begin{array}{c}
a_{1}, \cdots, a_{m}, z, \\
b_{1}, \cdots, b_{m}
\end{array} & {[(\mathrm{CP}) \text { is unbounded }] }
\end{aligned}=\underset{\tilde{W}, L}{\operatorname{Pr}} \operatorname{Pr}_{v, w}[(\mathrm{CP} 2 \mathrm{D}) \text { is unbounded }] ~\left[\begin{array}{|c}
\tilde{W}, L \\
\end{array} V_{2}\left(\Pi_{L}(C \cap \tilde{W})\right)\right], ~ \$
$$

and similarly,

$$
\begin{aligned}
\underset{\substack{a_{1}, \ldots, a_{m}, z, b_{1}, \ldots, b_{m}}}{\operatorname{Pr}}[\operatorname{sol}(\mathrm{CP}) \in M] & =\underset{\tilde{W}, L}{\operatorname{Pr}} \underset{v, w}{\operatorname{Pr}}\left[\operatorname{sol}(\mathrm{CP} 2 \mathrm{D}) \in \Pi_{L}(M \cap \tilde{W})\right] \\
& =\mathbb{E}_{\tilde{W}, L}\left[\Phi_{1}\left(\Pi_{L}(C \cap \tilde{W}), \Pi_{L}(M \cap \tilde{W})\right)\right] .
\end{aligned}
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\underset{\substack{a_{1}, \ldots, a_{m}, z \\ b_{1}, \cdots, b_{m}}}{\operatorname{Pr}}[(\mathrm{CP}) \text { is infeasible }]=\mathbb{E}_{\tilde{W}, L}\left[V_{0}\left(\Pi_{L}(C \cap \tilde{W})\right)\right]
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\begin{aligned}
& \operatorname{Pr}_{\substack{a_{1}, \cdots, a_{m}, z \\
b_{1}, \cdots, b_{m}}}^{\operatorname{Pr}}[(\mathrm{CP}) \text { is infeasible }]=\mathbb{E}_{\tilde{W}, L}\left[V_{0}\left(\Pi_{L}(C \cap \tilde{W})\right)\right] \\
& \quad=\mathbb{E}_{\tilde{W}}\left[V_{0}(C \cap \tilde{W})\right]
\end{aligned}
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\begin{aligned}
& \cos _{\substack{a_{1}, \ldots, a_{m}, z \\
b_{1}, \ldots, b_{m}}}^{\operatorname{Pr}}[(\mathrm{CP}) \text { is infeasible }]=\mathbb{E}_{\tilde{W}, L}\left[V_{0}\left(\Pi_{L}(C \cap \tilde{W})\right)\right] \\
& \quad=\mathbb{E}_{\tilde{W}}\left[V_{0}(C \cap \tilde{W})\right]=V_{0}(C)+V_{1}(C)+\cdots+V_{m-1}(C) .
\end{aligned}
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\left.\begin{array}{c}
\operatorname{Pr}, a_{1}, \cdots, a_{m}, z, \\
b_{1}, \cdots, b_{m}
\end{array}\right)[(\mathrm{CP}) \text { is unbounded }]=\mathbb{E}_{\tilde{W}, L}\left[V_{2}\left(\Pi_{L}(C \cap \tilde{W})\right)\right]
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\begin{aligned}
& {\underset{y}{a_{1}, \ldots, a_{m, z},}}_{b_{1}, \ldots, b_{m}}^{\operatorname{Pr}}[(\mathrm{CP}) \text { is unbounded }]=\mathbb{E}_{\tilde{W}, L}\left[V_{2}\left(\Pi_{L}(C \cap \tilde{W})\right)\right] \\
& \quad=\mathbb{E}_{\tilde{W}}\left[V_{2}(C \cap \tilde{W})+V_{3}(C \cap \tilde{W})+\cdots+V_{d-m+1}(C \cap \tilde{W})\right]
\end{aligned}
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\begin{aligned}
& \cos _{\substack{a_{1}, \cdots, a_{m}, z, b_{1}, \cdots, b_{m}}}^{\operatorname{Pr}}[(\mathrm{CP}) \text { is unbounded }]=\mathbb{E}_{\tilde{W}, L}\left[V_{2}\left(\Pi_{L}(C \cap \tilde{W})\right)\right] \\
& \quad=\mathbb{E}_{\tilde{W}}\left[V_{2}(C \cap \tilde{W})+V_{3}(C \cap \tilde{W})+\cdots+V_{d-m+1}(C \cap \tilde{W})\right] \\
& \quad=V_{m+1}(C)+V_{m+2}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\underset{\substack{a_{1}, \cdots, a_{m}, z \\ b_{1}, \cdots, b_{m}}}{\operatorname{Pr}}[\operatorname{sol}(\mathrm{CP}) \in M]=\mathbb{E}_{\tilde{W}, L}\left[\Phi_{1}\left(\Pi_{L}(C \cap \tilde{W}), \Pi_{L}(M \cap \tilde{W})\right)\right]
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\begin{aligned}
& \operatorname{ar}_{a_{1}, \ldots, a_{m}, z,}[\operatorname{sol}(\mathrm{CP}) \in M]=\mathbb{E}_{\tilde{W}, L}\left[\Phi_{1}\left(\Pi_{L}(C \cap \tilde{W}), \Pi_{L}(M \cap \tilde{W})\right)\right] \\
& b_{1}, \cdots, b_{m} \\
& =\mathbb{E}_{\tilde{W}}\left[\Phi_{1}(C \cap \tilde{W}, M \cap \tilde{W})\right]
\end{aligned}
$$

Theorem 4 (Kinematic formula)

Let $C \subseteq \mathbb{R}^{d}$ be a closed convex cone, and $W \subseteq \mathbb{R}^{d}$ be a uniformly random subspace of codimension $m \leq d-1$, and M be a conic Borel subset of \mathbb{R}^{d}. Then,
(1) (Random intersection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}(C \cap W, M \cap W)\right] & =\Phi_{m+j}(C, M), \quad \text { for } j=1, \cdots, d-m, \\
\mathbb{E}\left[V_{0}(C \cap W)\right] & =V_{0}(C)+V_{1}(C)+\cdots+V_{m}(C) .
\end{aligned}
$$

(2) (Random projection formula)

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{j}\left(\Pi_{W}(C), \Pi_{W}(M)\right)\right] & =\Phi_{j}(C, M), \quad \text { for } j=0, \cdots, d-m-1 \\
\mathbb{E}\left[V_{d-m}\left(\Pi_{W}(C)\right)\right] & =V_{d-m}(C)+V_{d-m+1}(C)+\cdots+V_{d}(C) .
\end{aligned}
$$

Proof of Theorem 1, cont'd.

$$
\begin{aligned}
& \operatorname{Pr}_{\substack{a_{1}, \cdots, a_{m}, z \\
b_{1}, \cdots, b_{m}}}^{\operatorname{Pr}}[\operatorname{sol}(\mathrm{CP}) \in M]=\mathbb{E}_{\tilde{W}, L}\left[\Phi_{1}\left(\Pi_{L}(C \cap \tilde{W}), \Pi_{L}(M \cap \tilde{W})\right)\right] \\
& \quad=\mathbb{E}_{\tilde{W}}\left[\Phi_{1}(C \cap \tilde{W}, M \cap \tilde{W})\right]=\Phi_{m}(C, M) .
\end{aligned}
$$

Any questions?

