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maximize 〈z, x〉
subject to 〈ai, x〉 = bi, i = 1, · · · ,m,

x ∈ C
(CP)

a1, · · · , am, z ∈ Rd, b1, · · · , bm ∈ R
C is a closed convex cone in Rd

Theorem 1

When a1, · · · , am, z and b1, · · · , bm are iid standard normal,

Pr [(CP) is infeasible] =

m−1∑
j=0

Vj(C),

Pr [(CP) is unbounded] =
d∑

j=m+1

Vj(C).

Furthermore, for a conic Borel set M ⊆ Rd,

Pr [sol(CP) ∈M ] = Φm(C,M).
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Φj(C, · ) is called the jth (conic) curvature measure of C

Vj(C) := Φj(C,Rd) is called the jth (conic) intrinsic volume of C

In particular, if A1, · · · , Am, Z ∼ GOE(d) or GUE(d) or GSE(d),
b1, · · · , bm are iid standard normal from R or C or H, then for
semidefinite program

maximize tr(Z†X)

subject to tr(A†iX) = bi, i = 1, · · · ,m,
X � 0

(SDP)

we can compute

Pr [(SDP) is infeasible] , Pr [(SDP) is unbounded] ,

and also
Pr [rank(sol(CP)) = r]

for each 0 ≤ r ≤ d, by obtaining an explicit formula for the intrinsic
volumes and the curvature measures of the positive-semidefinite cone
evaluated at the set of rank r matrices
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Intuitive meaning of Vj(C): how big are the j-dimensional “faces”
of C?

Φj(C,M): some sort of “localization” of Vj(C) into M

Let us look at Euclidean intrinsic volumes first!

6 / 36



Intuitive meaning of Vj(C): how big are the j-dimensional “faces”
of C?

Φj(C,M): some sort of “localization” of Vj(C) into M

Let us look at Euclidean intrinsic volumes first!

6 / 36



Regular n-gon inscribed in the circle of radius r in 2D

Number of vertices: n
Circumference: 2nr sin π

n

Area: nr2

2 sin 2π
n

2𝜋𝜋
𝑛𝑛
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Regular n-gon inscribed in the circle of radius r in 2D
Number of vertices: n
Circumference: 2nr sin π

n

Area: nr2

2 sin 2π
n

Consider the area of the ε-neighborhood
Green: πε2

Blue: 2nrε sin π
n

Red: nr2

2 sin 2π
n
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Regular n-gon inscribed in the circle of radius r in 2D
Number of vertices: n
Circumference: 2nr sin π

n

Area: nr2

2 sin 2π
n

Normalize by the volume of (d− j)-dimensional ball:
V0 = πε2/πε2 = 1
V1 =

(
2nrε sin π

n

)
/2ε = nr sin π

n

V2 =
(
nr2

2 sin 2π
n

)
/1 = nr2

2 sin 2π
n
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Regular n-gon inscribed in the circle of radius r in 2D
Number of vertices: n
Circumference: 2nr sin π

n

Area: nr2

2 sin 2π
n

The area of the ε-neighborhood
= V0 vol2(B2

ε ) + V1 vol1(B1
ε ) + V2 vol0(B0

ε )
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In general, for a compact convex set K in Rd, there uniquely
exists V0(K), · · · , Vd(K) ≥ 0, called the intrinsic volumes of
K, such that

vold(K +Bd
ε ) =

d∑
j=0

Vj(K) vold−j(B
d−j
ε )

The above equation is called the Steiner’s formula

Vj is continuous with respect to the Hausdorff metric

E.g., vol2(B2
r +B2

ε ) = π(r + ε)2 = 1 · πε2 + πr · 2ε+ πr2 · 1
V0(B

2
r ) = 1 = limn→∞ 1

V1(B
2
r ) = πr = limn→∞ nr sin

π
n

V2(B
2
r ) = πr2 = limn→∞

nr2

2
sin 2π

n
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For a closed convex cone C ⊆ Rd, we can define the conic
intrinsic volumes V0(C), · · · , Vd(C) of C using a spherical
analogue of the Steiner’s formula

For a polyhedral convex cone C, one can show

Vj(C) =
∑
F∈Fj

Pr
x∼N (0,Id)

[ΠC(x) ∈ F ]

where Fj is the set of j-dimensional (open) faces of C
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When C is a 2-dimensional cone with the central angle θ,
V2(C) = θ

2π
V1(C) = 1

2

V0(C) = π−θ
2π

𝐶𝐶

𝐶̌𝐶
𝑉𝑉0 𝐶𝐶

𝑉𝑉2 𝐶𝐶

𝑉𝑉1 𝐶𝐶 𝑉𝑉1 𝐶𝐶
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More generally, for a closed convex cone C ⊆ Rd, we can define
the conic curvature measures Φ0(C, · ), · · · ,Φd(C, · ) of C
using a generalized Steiner’s formula

For a polyhedral convex cone C, one can show

Φj(C,M) =
∑
F∈Fj

Pr
x∼N (0,Id)

[ΠC(x) ∈ F ∩M ]

where Fj is the set of j-dimensional (open) faces of C

When C is a 2-dimensional cone,

Φ2(C,M) = (central angle of C ∩M)/2π
Φ1(C,M) = (# of boundary edges of C contained in M)/2

Φ0(C,M) =

{
(central angle of Č)/2π if 0 ∈M
0 if 0 /∈M
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Lemma 2

Let v, w ∈ Sd−1, 〈v, w〉 = 0, and L := span {v, w}. Then for a closed
convex cone C ⊆ Rd, we have

sup {〈v, x〉 : x ∈ C, 〈w, x〉 = 1}
= sup {〈v, x〉 : x ∈ ΠL(C), 〈w, x〉 = 1} ,

Argmax {〈v, x〉 : x ∈ C, 〈w, x〉 = 1}
= C ∩Π−1

L [Argmax {〈v, x〉 : x ∈ ΠL(C), 〈w, x〉 = 1}] .

Proof.

x = xL + x⊥L ⇒ 〈v, x〉 = 〈v, xL〉, 〈w, x〉 = 〈w, xL〉, so

sup {〈v, x〉 : x ∈ C, 〈w, x〉 = 1}
= sup {〈v, xL〉 : xL ∈ ΠL(C), 〈w, xL〉 = 1} ,

and similarly the second claim follows.
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𝑤𝑤

𝑣𝑣

𝐶𝐶

𝐿𝐿

Π𝐿𝐿 𝐶𝐶

𝑥𝑥: 𝑥𝑥 ∈ 𝐶𝐶, 𝑤𝑤, 𝑥𝑥 = 1

�𝑥𝑥

�𝑥𝑥𝐿𝐿
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maximize 〈z, x〉
subject to 〈ai, x〉 = bi, i = 1, · · · ,m,

x ∈ C
(CP)

W :=
{
x ∈ Rd : 〈ai, x〉 = 0, i = 1, · · · ,m

}
Waff :=

{
x ∈ Rd : 〈ai, x〉 = bi, i = 1, · · · ,m

}
w: unique unit vector s.t. w ⊥W and Waff = W + hw for some h > 0

W̃ := spanWaff

v := ΠW (z)

unit sphere

𝑊𝑊

𝑊𝑊aff

𝑤𝑤
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Write x ∈ W̃ as x = hy for some y ∈W + w, then

〈z, x〉 = 〈v, x〉+ 〈z − v, x〉 = h 〈v, y〉+ h 〈z − v, w〉

Thus, (CP) is equivalent to the problem

maximize 〈v, y〉
subject to 〈w, y〉 = 1

y ∈ C ∩ W̃

which can be, by the lemma, further reduced to

maximize 〈v, y〉
subject to 〈w, y〉 = 1

y ∈ ΠL(C ∩ W̃ )

(CP2D)

19 / 36



Write x ∈ W̃ as x = hy for some y ∈W + w, then

〈z, x〉 = 〈v, x〉+ 〈z − v, x〉 = h 〈v, y〉+ h 〈z − v, w〉
Thus, (CP) is equivalent to the problem

maximize 〈v, y〉
subject to 〈w, y〉 = 1

y ∈ C ∩ W̃

which can be, by the lemma, further reduced to

maximize 〈v, y〉
subject to 〈w, y〉 = 1

y ∈ ΠL(C ∩ W̃ )

(CP2D)

19 / 36



Write x ∈ W̃ as x = hy for some y ∈W + w, then

〈z, x〉 = 〈v, x〉+ 〈z − v, x〉 = h 〈v, y〉+ h 〈z − v, w〉
Thus, (CP) is equivalent to the problem

maximize 〈v, y〉
subject to 〈w, y〉 = 1

y ∈ C ∩ W̃

which can be, by the lemma, further reduced to

maximize 〈v, y〉
subject to 〈w, y〉 = 1

y ∈ ΠL(C ∩ W̃ )

(CP2D)

19 / 36



Reformulate the problem:
1 Uniformly randomly generate a subspace W̃ of codimension m− 1

2 Uniformly randomly generate a 2-dimensional subspace L of W̃
3 Uniformly randomly generate an orthonormal frame (v, w) from L

Given these, we are looking for the probabilities that the following
optimization problem is (1) infeasible, (2) unbounded, (3) has a
unique solution and that solution is in ΠL(M ∩ W̃ ) some conic
Borel set M :

maximize 〈v, y〉
subject to 〈w, y〉 = 1

y ∈ ΠL(C ∩ W̃ )

(CP2D)
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Lemma 3

Let C̄ ⊆ R2 be a closed convex cone. For a uniformly random[
v w

]
∈ O(2), define

F̄ :=
{
x ∈ C̄ : 〈w, x〉 = 1

}
,

then we have

Pr
[
F̄ = ∅

]
= V0(C̄),

Pr
[
sup

{
〈v, x〉 : x ∈ F̄

}
=∞

]
= V2(C̄),

Pr
[
argmax

{
〈v, x〉 : x ∈ F̄

}
∈M

]
= Φ1(C̄,M)

for any conic Borel set M ⊆ R2.
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Pr
[
F̄ = ∅

]
= V0(C̄)

𝐶𝐶

𝐶̌𝐶
𝑤𝑤

𝑣𝑣
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Pr
[
sup

{
〈v, x〉 : x ∈ F̄

}
=∞

]
= V2(C̄)

𝐶𝐶

𝐶̌𝐶

𝑤𝑤𝑣𝑣

�𝐹𝐹
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Pr
[
argmax

{
〈v, x〉 : x ∈ F̄

}
∈M

]
= Φ1(C̄,M)

𝐶𝐶

𝑤𝑤𝑣𝑣

𝐶̌𝐶

�𝐹𝐹
𝐶𝐶

𝑤𝑤
𝑣𝑣

𝐶̌𝐶

�𝐹𝐹

Left: argmax is on the left boundary edge

Right: argmax is on the right boundary edge

If M contains no boundary, we get 0 = Φ1(C̄,M)

If M contains both boundaries, we get 1
2 = V1(C̄) = Φ1(C̄,M)

If M contains only one of the boundaries, we get
1
4 = 1

2V1(C̄) = Φ1(C̄,M)
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Proof of Theorem 1.
By the previous discussions,

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is infeasible] = Pr
W̃ ,L

Pr
v,w

[(CP2D) is infeasible]

= EW̃ ,L

[
V0(ΠL(C ∩ W̃ ))

]
and

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is unbounded] = Pr
W̃ ,L

Pr
v,w

[(CP2D) is unbounded]

= EW̃ ,L

[
V2(ΠL(C ∩ W̃ ))

]
,

and similarly,

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[sol (CP) ∈M ] = Pr
W̃ ,L

Pr
v,w

[
sol (CP2D) ∈ ΠL(M ∩ W̃ )

]
= EW̃ ,L

[
Φ1(ΠL(C ∩ W̃ ),ΠL(M ∩ W̃ ))

]
.
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).
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Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is infeasible] = EW̃ ,L

[
V0(ΠL(C ∩ W̃ ))

]
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2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is infeasible] = EW̃ ,L

[
V0(ΠL(C ∩ W̃ ))

]
= EW̃

[
V0(C ∩ W̃ )

]
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is infeasible] = EW̃ ,L

[
V0(ΠL(C ∩ W̃ ))

]
= EW̃

[
V0(C ∩ W̃ )

]
= V0(C) + V1(C) + · · · + Vm−1(C).
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is unbounded] = EW̃ ,L

[
V2(ΠL(C ∩ W̃ ))

]
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is unbounded] = EW̃ ,L

[
V2(ΠL(C ∩ W̃ ))

]
= EW̃

[
V2(C ∩ W̃ ) + V3(C ∩ W̃ ) + · · · + Vd−m+1(C ∩ W̃ )

]
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[(CP) is unbounded] = EW̃ ,L

[
V2(ΠL(C ∩ W̃ ))

]
= EW̃

[
V2(C ∩ W̃ ) + V3(C ∩ W̃ ) + · · · + Vd−m+1(C ∩ W̃ )

]
= Vm+1(C) + Vm+2(C) + · · · + Vd(C).
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[sol (CP) ∈M ] = EW̃ ,L

[
Φ1(ΠL(C ∩ W̃ ),ΠL(M ∩ W̃ ))

]
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[sol (CP) ∈M ] = EW̃ ,L

[
Φ1(ΠL(C ∩ W̃ ),ΠL(M ∩ W̃ ))

]
= EW̃

[
Φ1(C ∩ W̃ ,M ∩ W̃ )

]
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Theorem 4 (Kinematic formula)

Let C ⊆ Rd be a closed convex cone, and W ⊆ Rd be a uniformly random subspace of
codimension m ≤ d− 1, and M be a conic Borel subset of Rd. Then,

1 (Random intersection formula)

E [Φj(C ∩W,M ∩W )] = Φm+j(C,M), for j = 1, · · · , d−m,
E [V0(C ∩W )] = V0(C) + V1(C) + · · · + Vm(C).

2 (Random projection formula)

E [Φj(ΠW (C),ΠW (M))] = Φj(C,M), for j = 0, · · · , d−m− 1

E [Vd−m(ΠW (C))] = Vd−m(C) + Vd−m+1(C) + · · · + Vd(C).

Proof of Theorem 1, cont’d.

Pr
a1, ··· ,am,z,
b1, ··· ,bm

[sol (CP) ∈M ] = EW̃ ,L

[
Φ1(ΠL(C ∩ W̃ ),ΠL(M ∩ W̃ ))

]
= EW̃

[
Φ1(C ∩ W̃ ,M ∩ W̃ )

]
= Φm(C,M).
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Any questions?


