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Measure space (X,A , µ)

A set X
A σ-algebra A of subsets of X
A measure µ : A → [0,∞]

A measurable function f : X → R is a function such that
f−1

[
(−∞, a)

]
∈ A for all a ∈ R

Lp-spaces

Convergence theorems
Monotone convergence theorem
Fatou’s lemma
Lebesgue’s dominated convergence theorem
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Relations between modes of convergence

Egoroff’s theorem
Convergence in measure ⇒ pointwise a.e. up to a subsequence

cf) General topology

Topological spaces, continuous functions, topologies on function
spaces, compactness theorems

Bizarre role of “points”
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Importance of countability

Sequences are fine, but nay to nets /

Pointwise a.e. convergence is not topological

@ topology inducing pointwise a.e. convergence
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Basic settings

A ring (B,+, · ) is said to be Boolean if a2 = a for all a ∈ B

Example: (℘(X), 4 ,∩)
More generally, any set algebra (closed under union/complements)

A function µ : B → [0,∞] is called a measure if
1 µ(0) = 0,
2 µ(a+ b) = µ(a) + µ(b) whenever ab = 0.

A pair (B,µ) is called a measured ring

Remark

[0,∞] can be replaced by any commutative monoid (e.g. locally
convex space)

We don’t require µ to be countably-additive
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Some facts about Boolean rings

Proposition 1

Let B be a Boolean ring.

1 Any a ∈ B is the additive inverse of itself: a+ a = 0.

2 B is commutative.

3 If B does not have zero divisor, then B ∼= F2.

4 SpecB = maxSpecB and B/p ∼= F2 for all p ∈ SpecB.

a+ a = (a+ a)2 = a+ a+ a+ a

a+ b = (a+ b)2 = a+ b+ ab+ ba
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Some facts about Boolean rings

Partial order

a ≤ b if and only if ab = a

a ∧ b = ab, a ∨ b = a+ b+ ab

All “set-theoretic identities” on finitely many terms hold

Ring-theoretic ideals ⇔ order-theoretic ideals

(Closure under finite joins) a, b ∈ a implies a ∨ b ∈ a, and
(Downward closure) b ∈ a and a ≤ b implies a ∈ a.

We call B complete if every subset of B admits the supremum
(and the infimum)

℘(X) is complete
Borel/Lebesgue σ-algebras aren’t
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Topology on measured rings

Given a measured ring (B,µ),

Bµ<∞ := {a ∈ B : µ(a) <∞} is an ideal
For each t ∈ Bµ<∞, define

dµ;t(a, b) := µ(t(a+ b))

then dµ;t is a pseudometric

Proposition 2

B endowed with the topology generated by {dµ;t}t∈Bµ<∞
is a

topological ring.

e.g., if µ(a) = 0 or µ(a) =∞ for all a ∈ B, then the topology is
indiscrete
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Topology on measured rings

µ is semifinite, if µ(a) = supt∈Bµ<∞ µ(ta) for all a ∈ B

cf) 0 < µ(a) ⇒ ∃b ≤ a; 0 < µ(b) <∞
Define the semifinite part of µ as

µsf : a 7→ sup
t∈Bµ<∞

µ(ta),

then µsf is a semifinite measure

Proposition 3

µ and µsf induce the same topology.

Suppose from now on every measure is semifinite
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Topology on measured rings

Theorem 4

A semifinite measured ring (B,µ) is a complete Hausdorff topological
ring if and only if:

1 B is a complete Boolean ring, and

2 µ is strictly positive and order-continuous.

A measure µ is said to be strictly positive, if µ(a) = 0 implies
a = 0.

A measure µ is said to be order-continuous, if for any increasing
net (aα)α∈D with the supremum a =

∨
α∈D aα, we have

µ(a) = lim
α∈D

µ(aα).
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Completion of measured rings

Every topological ring admits the (Hausdorff) completion

Completion of a semifinite measured ring (B,µ)?

Theorem 5

For a semifinite measured ring (B,µ), let B
µ

be the completion of B
with respect to the topology induced by µ, then there uniquely exists a
semifinite measure µ̄ : B

µ → [0,∞] such that

1 µ̄ extends µ, and

2 µ̄ induces the topology of B
µ

as the completion of B.

Hence, B
µ

is a complete Boolean ring, and µ̄ is strictly positive and
order-continuous.

11 / 22
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Completion of measured rings

Bottomline: we do not need to impose any condition on (B,µ) a
priori; just complete it then everything becomes nice

Application: Radon-Nikodym theorem for finitely-additive
measures

We can do similar things with locally convex space-valued
measures or (possibly uncountable) collections of measures
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Measure algebra

(X,A , µ): measure space

kerµ := {A ∈ A : µ(A) = 0} is an ideal

We can find the induced measure µ̄ : A / kerµ→ [0,∞]

µ̄ is strictly positive

A / kerµ is σ-complete and µ̄ is σ-additive

Proposition 6

If µ is finite, then the Boolean ring A / kerµ is complete and µ̄ is
order-continuous. Hence, (A / kerµ, µ̄) is the Hausdorff completion of
the measured ring (A , µ).

A / kerµ has the countable chain condition (ccc)

Every collection of nonzero disjoint elements must be countable
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Algebraic definition of measurable functions

We can algebraically define simple functions

(Free R-vector space over B)/(certain relations)
The free basis corresponding to a ∈ B is the indicator function 1a

(Bounded measurable functions) = (uniform limits of simple
functions)

Mb(B;R): completion with respect to the uniform norm

Integral of simple functions can be defined with no problem

Lp-spaces as completions with respect to the p-norm
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Stone duality theorem

A space X is totally-disconnected if every connected component of X is
a singleton set

A Stone space is a compact Hausdorff totally-disconnected space

Theorem 7 (Stone duality theorem)

The functor Spec (with the Zariski topology) is a contravariant equivalence
between the category of Boolean rings (with ring maps) and the category of
Stone spaces (with continuous maps). The inverse functor is Clopen (or
equivalently, C( · ;F2)).
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Bounded measurable functions

((algebraic) point-free simple functions) =
(Clopen(SpecB)-simple functions on SpecB)

Clopen simple functions are continuous and separate points in
SpecB; apply Stone-Weierstrass!

(Uniform closure of clopen simple functions) = (continuous
functions on SpecB)

Therefore,
Mb(B;R) = C(SpecB;R)
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Quotient by a.e. equivalence

Spec A

X Spec(A / kerµ)

Mb(X;R) C(Spec A ;R)

L∞(X,µ;R) C(Spec(A / kerµ);R)

∼=

a.e. restriction

∼=
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Summary

Old wisdom in pointed measure theory:

measurable functions are “almost” continuous functions

Reality in point-free measure theory:

measurable functions are “literally” continuous functions
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Unbounded measurable functions

(B,µ): complete Hausdorff & finite

For each dense open U ⊆ SpecB, consider the space C(U ;R)
with the compact-open topology

As U shrinks, get a directed system (C(U ;R))U of TVS’s given by
restriction maps

Define
L0(µ;R) := lim−→

U

C(U ;R)

in the category of TVS’s

Elements in L0(µ;R) are point-free measurable functions on B
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Unbounded measurable functions

L0(µ;R) := lim−→
U

C(U ;R)

Fact: L0(X,µ;R) is the completion of the space of simple
functions with respect to the topology of convergence in measure
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Unbounded measurable functions

Theorem 8

The topological vector space

L0(µ;R) := lim−→
U

C(U ;R)

is precisely the completion of the space of real-valued clopen simple
functions with respect to the topology of convergence in measure.

Vector-valued case?

Conjecture: L0 is the sheafification of L∞
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Some consequences

Every Lp-space (the completion with respect to the p-norm) is
embedded in L0

Every measurable function is locally a uniform limit of simple
functions

Convergence theorems for nets
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